100 великих научных достижений России — страница 31 из 81

Пограничная область между химией и новыми разделами физики, вобравшая в себя последние научные достижения, получила быстрое развитие – в первую очередь благодаря открытию и изучению ранее неизвестные типов химических реакций. В частности, теории разветвленных цепных реакций, которую независимо друг от друга развивали в 1920–1930-е гг. советский ученый Н.Н. Семенов и английский физико-химик С.Н. Хиншвулд. В 1956 г. оба исследователя были удостоены Нобелевской премии по химии (к слову, из российских химиков Семенов – единственный лауреат по этой номинации) – «за исследования в области механизма химических реакций». Разработанная Семеновым теория цепных химических реакций легла в основу создания полимеров – веществ с заранее заданными свойствами, химических лазеров и др.

(Цепными реакциями называют сложные реакции, в которых промежуточные активные частицы, регенерируясь в каждом элементарном акте, вызывают цепь превращений исходного вещества. Различают химические цепные реакции (горение, полимеризация) и ядерные. В первых активными частицами выступают свободные радикалы, возбужденные атомы и молекулы, во вторых – нейтроны.)

Опубликованная в 1934 г. Семеновым монография «Цепные реакции» закрепила за ним и руководимым им Институтом химической физики роль мирового лидера в области химической кинетики.

Еще одним шагом по развитию новой науки стало создание Семеновым теории теплового взрыва газовых смесей (самовоспламенения), впервые изложенной в его статье «К теории процессов горения» (1928). На основе этой теории химик в дальнейшем построил учение о распространении пламени, детонации, горении взрывчатых веществ и порохов.

Предыдущие открытия априори подготовили Семенова к участию в ядерном проекте. В 1945 г. Николай Николаевич сам обратился к правительству с предложением участвовать в работах по созданию атомного оружия. Институт химической физики успешно участвовал в расчетах, измерении констант, подготовке полигона и оборудования для испытаний.

В 1955 г. Семенов сделал очередное выдающееся открытие: новый тип катализа – ионно-гетерогенный. Ученым и его учениками была развита цепная теория гетерогенного катализа, разработаны статистическая теория каталитической активности, теория топохимических процессов и кристаллизации.

Во второй половине XX в. Семенов стал инициатором нового направления развития химической физики – биологического. В результате за несколько десятилетий химическая физика стала теоретической основой науки о жизни, и на слиянии ее и биологии возникла новая наука – биохимическая физика, которая по прогнозам (академик А.Е. Шилов) в нашем веке должна стать основной в понимании молекулярных механизмов процессов, происходящих в живых организмах.

Н.Н. Семенов создал знаменитую семеновскую научную школу химической физики и воспитал блестящую плеяду учеников, ставших академиками: В.Н. Кондратьева, Л.Б. Зельдовича, Ю.Б. Харитона, В.В. Воеводского, В.И. Гольданского, Н.С. Ениколопова, Н.М. Эмануэля, А.И. Шальникова, А.Е. Шилова, Д.Г. Кнорре, М.А. Садовского, А.Б. Налбандяна и многих других.

Современный этап в развитии химической физики характеризуется широким применением масс-спектрометрии, рентгеноструктурного анализа, электронной микроскопии, ядерного магнитного резонанса, метода спинового эха, электронографии и ионографии, ударно-волновых и десятков, если не сотен других методов теоретической и экспериментальной физики.

Химическая физика нашла широчайшее применение в науке и технике. Она изучает процессы горения и взрыва, электронную структуру молекул и твердых тел, элементарные акты химических реакций, молекулярные спектры и т. д. В ней сегодня выделились два основных направления: «определение электронной и атомно-молекулярной структуры химических частиц и образованных ими веществ и исследования, связанные с решением проблем химической динамики, то есть изменений во времени энергетических и структурных характеристик частиц».

Ныне получили дальнейшее развитие многие разделы химической физики, разработанные Семеновым и его учениками – электрохимия и катализ, квантовая и ядерная химия; появилась химия низких температур и высоких энергий, фото– и плазмохимия, радиационная химия… Не забыта и прародительница этой науки – физическая химия.

Говорить о применении этой науки на практике можно много, но разве упомянутых полимеров, химических лазеров и атомной бомбы мало?

Геология, геофизика

КЛИМАТОЛОГИЯ ВОЕЙКОВА

Метеоролог-климатолог, географ, путешественник, популяризатор науки; доктор философии Геттингенского университета, почетный доктор физической географии Московского и профессор Петербургского университетов; член-корреспондент Петербургской АН, член многих русских и зарубежных научных обществ; организатор и председатель Метеорологической комиссии Русского географического общества (РГО); основатель и главный редактор первого метеорологического журнала «Метеорологический вестник»; организатор 12 специальных станций с расширенной программой сельскохозяйственных метеорологических наблюдений; редактор отдела географии Энциклопедического словаря Брокгауза и Ефрона, один из инициаторов и организаторов специального географического высшего образования, первый директор Высших географических курсов; глава Петербургского вегетарианского общества; обладатель большой золотой медали РГО и золотой медали Всемирной выставки в Париже 1878 г., Александр Иванович Воейков (1842–1916) является основоположником климатологии в России.

Если бы потребовалось назвать из великих русских ученых самого доброго и отзывчивого, кандидатом № 1 наверняка бы стал Александр Иванович Воейков. Это был скромный вечный труженик-бессребреник и потому, наверное, свободный человек.

А.И. Воейков – из когорты русских ученых-естественников (Н.И. Вавилов, В.А. Обручев), которые не только исходили мир, но и оставили миру свои фундаментальные научные исследования, составившие гордость России.

«Долго ль мне гулять на свете / То в коляске, то верхом, / То в кибитке, то в карете, / То в телеге, то пешком?» – эти строки явно о Воейкове. Легче назвать, где не «погулял» путешественник, чем перечислить места, которые Александр Иванович видел собственными глазами. Во всяком случае, на корабле он обогнул земной шар и посетил Западную и Восточную Европу, Ближний Восток, Северную, Центральную и Южную Америку, Южную, Переднюю и Юго-Восточную Азию, Европейскую часть России, Кавказ, Южный Урал, Крым, Среднюю Азию… В некоторых регионах он побывал не раз и не два, и не в одном, а в десятках мест.

Могила А.И. Воейкова в Санкт-Петербурге

Ученого гнала по миру жажда исследователя. С 8 лет Воейков записывал сведения о температуре воздуха, направлении и скорости ветра, о дождях, снежных буранах, грозах и иных явлениях природы, стараясь увязать их в стройную систему.

Грандиозные путешествия дали ученому материал к не менее грандиозному научному и научно-популярному наследию: 1700 публикаций вышло из-под его пера – книг, статей, рефератов, рецензий, заметок самого разного свойства (перечень их занимает более 60 страниц машинописного текста). Из них как минимум четыре сотни (есть данные – 517) классических научных трудов по климатам.

Труды метеоролога венчает монография «Климаты земного шара, в особенности России». Эта книга, изданная в 1884 г. Санкт-Петербургским картографическим заведением А. Ильина, в твердом переплете мраморного цвета, с приложением 14 графических таблиц и 10 карт давно стала библиографической редкостью. Энциклопедия климатологии земного шара была переведена на основные европейские языки. За этот труд РГО удостоило ученого высшей своей наградой – золотой Константиновской медалью.

За время, прошедшее с той поры, о климате в мире накоплено столько информации, что для ее обобщения вновь требуется климатолог ранга Воейкова. Тем не менее до сих пор труды русского ученого (прежде всего «Климаты земного шара») используются как учебное пособие, и главные его выводы «не полиняли и перышком». Что же это за положения?

До Воейкова в науке не имелось классификации климатов Земли, отсутствовали описания отдельных климатических зон, не было систематизации рек по гидрологическому режиму, неясна была взаимосвязь климата с основными компонентами природы – почвой, воздухом, водами, растительным и животным миром. Никто из ученых не занимался атмосферой, снегом, обледенением, не изучал культурного (и бескультурного) воздействия человека на природу. И т. д.

Все это Воейкову пришлось осваивать и систематизировать впервые. Он был не только пионером многих земель, часто продираясь по ним сквозь заросли с топором в руке, но и пионером науки. Все, о чем говорится далее, он сделал впервые, потому мы это слово опустим.

По большому счету, Воейков дал описание системы климатов и поставил задачу выяснения сущности метеорологических явлений и структуры климатических процессов. Ученого не пугало отсутствие многолетних метеорологических данных. В обобщениях ему помогали эрудиция, интуиция и убежденность во взаимосвязанности всех природных явлений. Исследователь использовал любой косвенный признак – от типа жилища до структуры почв.

При изучении климатических и географических явлений Воейков применил т. н. метод балансов – количественно характеризующий динамические явления по перемещению вещества и энергии в ландшафтных комплексах. Этот метод нашел широкое приложение в физической географии (радиационный баланс, тепловой, водный, баланс снежного покрова, баланс биомассы и т. д.), а также стал основой работы физико-географических станций и вообще геофизики ландшафта.

Учитывая целый комплекс климатических факторов (многолетних, сезонных и суточных колебаний уровня воды, температуры и расходов воды, ледовых явлений, наносов и т. п.), Воейков сгруппировал реки по гидрологическому режиму. Классификация Воейкова стала основой всех последующих классификаций.

Воейков рассмотрел климатическое взаимодействие различных территорий при переносе воздушных масс, исследовал циркуляцию атмосферы, установил роль муссонов на Дальнем Востоке и вообще во внетропической зоне. Нашел отрог высокого давления, простирающийся от сибирского антициклона через степи России в Западную Европу, – т. н. «ось большого материка Воейкова» – и выяснил его роль в распределении ветров на Русской равнине. Для понимания процессов приземного климата стал изучать высокие слои атмосферы.