Представьте себе, что было бы, если бы каждый из нас отправлял свой автомобиль на свалку после первой же поездки?.. Между тем большинство космических кораблей и ракет именно одноразовые. И летать в космос хотя бы так, как мы летаем на самолетах, пока не получается.
Но может ли быть иначе?
Космонавты идут на абордаж
Этот проект родился на волне той эйфории, которая царила в советской космонавтике после полета человека в космос. По окончании «совместного полета» «Востока-3» и «Востока-4», когда корабли, не имеющие возможности маневра, за счет точности запуска удалось свести на расстояние до 5 км, Научно-техническая комиссия Генштаба сделала вывод: «Человек способен выполнять в космосе все военные задачи, аналогичные задачам авиации (разведка, перехват, удар). Корабли „Восток“ можно приспособить к разведке, а для перехвата и удара необходимо срочно создавать новые, более совершенные космические корабли».
И такие корабли стали разрабатываться. Так, на основе пилотируемого орбитального корабля «7К-ОК» («Союз») планировалось создать космический перехватчик «7К-П» («Союз-П»).
Поначалу проектом занималось ОКБ-1, но в 1964 году из-за перегруженности «королевского хозяйства» другими заказами все материалы по «Союзу-П» были переданы в филиал № 3 ОКБ-1 при куйбышевском авиазаводе «Прогресс». Начальником филиала в то время был ведущий конструктор Дмитрий Козлов.
Поначалу полагали, что «Союз-П» будет обеспечивать лишь сближение корабля с вражеским космическим объектом и выход космонавтов в открытый космос с целью его обследования. Затем в зависимости от результатов инспекции космонавты должны были либо вывести объект из строя, либо вообще снять его с орбиты, поместив в контейнер своего корабля.
Однако по здравому размышлению от такого опасного для космонавтов проекта отказались. Дело в том, что в то время практически все советские спутники снабжались аварийной системой подрыва. Вполне логичным было предположить, что подобные меры безопасности предпримет и потенциальный противник. Так что космонавты вполне могли бы стать жертвами мин-ловушек. Поэтому от инспекции пришлось отказаться. Но сам проект создания пилотируемого космического перехватчика продолжал развиваться.
В рамках обновленного проекта предполагалось создать корабль «Союз-ППК» («Пилотируемый перехватчик»), оснащенный 8 небольшими ракетами. Теперь космонавты, приблизившись к космическому аппарату противника, должны были на взгляд оценить его предназначение и в случае необходимости могли расстрелять с помощью бортовых мини-ракет.
Кроме корабля-перехватчика «Союз-П», в филиале № 3 Дмитрия Козлова разрабатывались военные корабли «Союз-ВИ» («Военный исследователь») и «Союз-Р» («Разведчик»), Впрочем, вскоре все варианты были слиты воедино в проекте универсального военного корабля, который мог бы осуществлять визуальную разведку, фоторазведку, совершать маневры для сближения и уничтожения космических аппаратов потенциального противника.
Новый космический корабль «7К-ВИ» с экипажем из двух человек имел полную массу 6,6 т и мог работать на орбите в течение трех суток. Однако поскольку ракета-носитель «Союз» могла вывести на расчетную орбиту только 6,3 т полезного груза, пришлось подвергнуть модернизации как сам корабль с целью его облегчения, так и ракету, увеличив ее стартовую мощность.
В итоге появился проект нового варианта комплекса. Он был одобрен правительством. Испытания «Союза-ВИ» были намечены на конец 1968 или начало 1969 года.
В отличие от других модификаций «Союза» места военного экипажа располагались не в ряд, а друг за другом. Это позволило разместить приборы контроля и управления по боковым стенам капсулы. Кроме того, на спускаемом аппарате находилась безоткатная пушка Нудельмана, разработанная специально для стрельбы в вакууме. Испытания на стенде доказали, что космонавт мог бы нацеливать космический корабль и пушку с минимальным расходом топлива.
В орбитальном модуле имелись также различные приборы для наблюдения за Землей и околоземным пространством — телескопы и бинокли, радары, фотоаппараты… На внешней подвеске орбитального модуля были закреплены штанги с пеленгаторами, предназначенными для поиска вражеских объектов.
Еще одним новшеством, примененным на «Союзе-ВИ», стала энергоустановка на базе изотопного реактора. Дело в том, что привычные солнечные батареи, по мнению военных, делали корабль чересчур уж уязвимым.
В случае надобности «Союз-ВИ» предполагали также оснастить стыковочным узлом, позволяющим осуществлять стыковку с военной орбитальной станцией «Алмаз».
В сентябре 1966 года была сформирована группа военных космонавтов, в которую вошли: Павел Попович, Алексей Губарев, Юрий Артюхин, Владимир Гуляев, Борис Белоусов и Геннадий Колесников. Экипажи Попович — Колесников и Губарев — Белоусов должны были первыми отправиться в космос на новом рекордном для своего времени корабле.
Однако тут на «Союз-ВИ» ополчился Василий Мишин и другие ведущие конструкторы ОКБ-1. Они полагали, что нет смысла создавать столь сложную и дорогую модификацию уже существующего корабля «7К-ОК» («Союз»), если последний вполне способен справиться со всеми задачами, которые могут поставить перед ним военные. Оппоненты также утверждали, что нельзя распылять силы и средства, когда Советский Союз может утратить «первенство» в лунной «гонке». На самом же деле, как выяснилось позднее, москвичи просто не хотели делиться лаврами с куйбышевцами. И они все-таки добились своего: в декабре 1967 года работы по созданию военного космического корабля «Союз-ВИ» были свернуты.
Таинственная «Спираль»
Охоту за спутниками предполагалось осуществлять также с помощью космического самолета «Спираль», разработка которого началась в 1965 году. Скажем несколько слов и о нем.
Уже вскоре после начала первых космических полетов конструкторы начали понимать, что полеты в космос на одноразовых ракетах весьма дороги и не очень надежны. «Вот если бы можно было в космос взлететь с обычного аэродрома!» — мечтали они.
Для осуществления этой мечты было сделано немало по обе стороны океана. В США, в частности, была осуществлена целая программа постройки и испытаний экспериментальных ракетопланов, которые сбрасывались с самолета-носителя Б-29 или Б-52 и, включив затем собственные двигатели, развивали гиперзвуковые скорости, ставили рекорды высоты.
Так, например, в серии полетов, совершенных на самолете Х-15 в начале 60-х годов был поставлен ряд рекордов, которые впечатляют и поныне. Скажем, в сентябре 1961 года самолет развил скорость 5832 км/ч, а 22 августа 1963 года достиг высоты 107 906 м!
В дальнейшем предполагалось, что подобные самолеты смогут выходить и на орбиту.
Узнав о достижениях американцев, наши конструкторы тоже принялись за освоение подобных рубежей. В середине 60-х годов ОКБ-155 Артема Микояна получает задание правительства возглавить работы по орбитальным и гиперзвуковым самолетам, а точнее — по созданию двухступенчатой авиационно-космической системы «Спираль». Главным конструктором этой системы стал Глеб Евгеньевич Лозино-Лозинский.
Перебрав несколько вариантов, конструктор и его коллеги в конце концов пришли к такому решению. Система «Спираль» должна состоять из 52-тонного гиперзвукового самолета-разгонщика, получившего индекс «50–50», и расположенного на нем 8,8-тонного пилотируемого орбитального самолета (индекс «50») с 54-тонным двухступенчатым ракетным ускорителем.
Самолет должен разогнать «Спираль» до гиперзвуковой скорости 1800 м/с (Мб). Затем на высоте 28–30 км происходило разделение ступеней. Разгонщик возвращался на аэродром, а орбитальный самолет с помощью ракетного ускорителя, работающего на фтороводородном (F2+H2) топливе, должен был выйти на орбиту.
Конструкции и той и другой машины были разработаны достаточно подробно.
Так, экипаж самолета-разгонщика размещался в двухместной герметичной кабине с катапультными креслами. Собственно орбитальный самолет вместе с ракетным ускорителем крепился сверху в специальном ложе, причем носовая и хвостовая части закрывались обтекателями.
В качестве топлива разгонщик использовал сжиженный водород, который подавался в блок из четырех турбореактивных двигателей АЛ-51 разработки Архипа Люльки, имеющих общий воздухозаборник и работающих на единое сверхзвуковое сопло внешнего расширения. Особенностью двигателей являлось использование паров водорода для привода турбины. Вторым принципиальным новшеством был интегрированный регулируемый гиперзвуковой воздухозаборник, использующий для сжатия поступающего в турбины воздуха практически всю переднюю часть нижней поверхности крыла. Расчетная дальность полета самолета-разгонщика с нагрузкой составляла 750 км, а при полете в качестве разведчика — более 7000 км.
Боевой многоразовый пилотируемый одноместный орбитальный самолет длиной 8 м, с размахом крыла 7,4 м (в разложенном положении) выполнялся по схеме «несущий корпус». Благодаря выбранной аэродинамической компоновке из общего размаха на стреловидные консоли крыла приходилось лишь 3,4 м, а остальная часть несущей поверхности соотносилась с шириной фюзеляжа. Консоли крыла при прохождении участка плазмообразования (выведение на орбиту и начальная фаза спуска) отклонялись вверх для исключения прямого обтекания их тепловым потоком. На атмосферном участке спуска орбитальный самолет раскладывал крылья и переходил в горизонтальный полет.
Двигатели орбитального маневрирования и два аварийных ЖРД работали на высококипящем топливе АТ-НДМГ (азотный тетраксид и несимметричный диметилгидразин), аналогичном применяемому на боевых баллистических ракетах, которое в дальнейшем планировалось заменить на более экологичное топливо на основе фтора. Запасов топлива хватало на орбитальный полет продолжительностью до двух суток, но основная задача орбитального самолета должна была выполняться в течение первых 2–3 витков. Боевая нагрузка составляла 500 кг для варианта разведчика и перехватчика и 2 т — для космического бомбардировщика. Фотоаппаратура или ракеты располагались в отсеке за отделяемой кабиной-капсулой пилота, обеспечивающей спасение пилота на любых стадиях полета. Посадка совершалась с использованием турбореактивного двигателя на грунтовой аэродром со скоростью 250 км/ч на выпускаемое четырехстоечное лыжное шасси.
Для защиты аппарата от нагрева при торможении в атмосфере предусматривался теплозащитный металлический экран, выполненный из множества пластин жаропрочной стали ВНС и ниобиевых сплавов, расположенных по принципу «рыбной чешуи». Экран подвешивался на керамических подшипниках, выполнявших роль тепловых барьеров, и при колебаниях температуры нагрева автоматически изменял свою форму, сохраняя стабильность положения относительно корпуса. Таким образом, на всех режимах конструкторы надеялись обеспечить постоянство аэродинамической конфигурации.
К орбитальному самолету пристыковывался одноразовый двухступенчатый блок выведения, на первой ступени которого стояли четыре ЖРД, а на второй — один. В качестве топлива на первое время планировалось использовать жидкие кислород и водород, а впоследствии перейти на фтор и водород. Ступени ускорителя по мере вывода самолета на орбиту последовательно отделялись и падали в океан.
Планом работы над проектом предусматривалось создание к 1968 году аналога орбитального самолета с высотой полета 120 км и скоростью М 6–8, сбрасываемого со стратегического бомбардировщика Ту-95, своеобразного ответа американской рекордной системе: В-52 и Х-15. К 1969 году планировалось создать экспериментальный пилотируемый орбитальный самолет ЭПОС, имеющий полное сходство с боевым орбитальным самолетом, который выводился бы на орбиту ракетой-носителем «Союз». В 1970 году должен был начать летать и собственно разгонщик — сначала на керосине, а спустя два года и на водороде. Полностью готовая система должна была стартовать в космос в 1973 году.
Ею, кстати, многие годы, кроме прочих специалистов, занимался и второй космонавт СССР Г. С. Титов. Отъездив после полета, как и Гагарин, положенные почетные маршруты по нашей стране и ее окрестностям, Титов поступил в Академию имени Н. Е. Жуковского. И здесь узнал, что в самолетном КБ А. Микояна идут работы над «космическим истребителем» многоразового использования по проекту «Спираль».
За время учебы Титов понял (хотя официального запрета вроде и не было), что шансов слетать еще раз в космос в рамках программы пилотируемых полетов у него крайне мало — там и так большая очередь из тех, кто еще не летал.
А роль «свадебного генерала» его не устраивала. И тогда он попросился в КБ Микояна на роль первого пилота космического истребителя. Микоян, впрочем, встретил его без особой радости, понимая, какой груз ответственности за судьбу Титова он на себя возлагает. Тем не менее, космонавт № 2 стал первым в списке будущих пилотов «космического истребителя» наряду с А. Филипченко и А. Куклиным.
Будущие космонавты-испытатели прошли теоретическую подготовку в Липецке, а затем, в 1967 году, во Владимировке начали осваивать испытательную работу. Затем, по мере развертывания работ по проекту «Спираль», в Звездном городке был создан так называемый четвертый отдел, куда вошли молодые летчики Кизим, Романенко, Джанибеков, Малышев и другие.
Ведущим конструктором «космического истребителя» многоразового использования, как уже говорилось, стал Г. Е. Лозино-Лозинский, который в дальнейшем будет и главным конструктором «Бурана».
Предшественниками самого будущего истребителя стали так называемые БОРы, на которых в беспилотном режиме отрабатывались разные узлы и методики использования будущего космолета. Так один из БОРов, напоминавший обыкновенный МиГ-17, только с укороченными крылышками и лыжеобразной формой фюзеляжа, подвешивался к самолету-носителю, затем сбрасывался с большой высоты и без двигателя шел на посадку. Другая модификация, полностью бескрылая и больше всего похожая на лапоть с треугольными стабилизаторами в корме, поднималась ракетой-носителем в космос и оттуда по спирали планировала на Землю, приводняясь в Тихом океане.
Поначалу Министерство обороны проявило большой интерес к проекту «Спираль», поскольку космолет можно было запустить почти с любой точки СССР. Поскольку, как предполагали наши эксперты, все наши три космодрома — Байконур, Плесецк и Капустин Яр — наверняка были на прицеле боевых ракет вероятного противника, то «космический истребитель» вместе с разгонным блоком в одном из вариантов мог бы стартовать в космос со «спины» гигантского самолета-носителя (типа будущей «Мрии»). Асам самолет-носитель мог бы подняться с любого большого аэродрома и туда же затем приземлиться. И сам космолет после выполнения задания тоже мог сесть на аэродромную полосу.
И все шло как будто неплохо. Но в 1967 году новый министр обороны Г. Гречко напрочь «зарубил» проект: слишком маленьким (длина всего 6 метров) и несерьезным показался ему этот космический самолетик. К тому времени до руководства страны дошли сведения о разработке в США куда более массивного «Space Shuttle» — «космического челнока» — и нашим конструкторам по заведенному еще при Сталине обычаю было приказано скопировать эту конструкцию.
Дело в том, что на одном из заседаний Политбюро кто-то из «спецов» обронил фразу. Дескать, если шаттл на очередном витке нырнет вниз и с пике сбросит атомную бомбу на Кремль, защититься нам будет нечем. И Лозино-Лозинскому было приказано сделать такой же космолет.
Логика действий была совершенно непонятной. Если шаттл собирались сбивать, то и «Спираль» могла сделать это за милую душу. Если на «Буране» собирались возить аналогичные заряды для сброса на Белый дом, так уже тогдашние заряды были достаточно компактны, чтобы их мог принять на борт и сбросить в нужной точке и небольшой космолет.
Однако логика наших верхов была «железной»: «В Белом доме, чай, не дураки сидят. И если они приняли решение строить „Спейс Шаттл“, значит, и нам нужно делать то же…»
Финансирование программы «Спираль» прикрыли. Все силы и средства были брошены на никому не нужный, как теперь всем очевидно, «Буран».
И последующие запуски «БОРа-4», который представлял собой беспилотную уменьшенную вдвое копию «Спирали» (длина 3,4 м, размах крыла 2,6 м, стартовая масса около 1450 кг), стали использовать исключительно для опробования того или иного варианта теплозащиты в виде термоустойчивых плиток.
Между тем в конструкцию «БОРа-4», как и самой «Спирали», была заложена такая хитрость. Консоли его крыла могли поворачиваться в корневой части, при этом величина угла «развала» определяла угол атаки, при котором аппарат самобалансируется при входе в плотные слои атмосферы.
Это революционное решение снимало проблему защиты относительно острой передней кромки крыла от высоких температур: при поднятых консолях скоростной напор встречался с нижним днищем и «стекал» с крыла. А стало быть, и теплозащита могла быть не столь уж капитальной.
Это показал первый испытательный полет «БОРа-4», который был запущен 5 декабря 1980 года по суборбитальной траектории в направлении озера Балхаш. Полет доказал, что для защиты космолета вполне достаточно и уносимой абляционной теплозащиты на основе материала марки ПКТ-ФП, состоящего из фенолформальдегидной ткани, пропитанной смесью смол. Сходная защита, кстати, поныне применяется на спускаемых аппаратах кораблей «Союз» и за многие годы вполне доказала свою надежность.
Тем не менее в последующих полетах поверх абляционной теплозащиты на тонкую металлическую обшивку смонтировали и соответствующую «бурановскую» теплозащиту — керамические белые и черные плитки на основе ультратонкого кварцевого волокна, маты гибкой теплозащиты на базе органического войлока и носовой кок из композиционного материала «углерод-углерод».
Созданный задел и приобретенный опыт работы над «Спиралью» значительно облегчили и ускорили строительство многоразового космического корабля «Буран». Используя полученный опыт, Т. Е. Лозино-Лозинский возглавил создание планера «Бурана». Игорь Волк, выполнявший подлеты на дозвуковом аналоге «БОРа», впоследствии первым поднял атмосферный аналог «Бурана» в воздух и стал командиром отряда летчиков-испытателей, работавших по программе «Буран».
Противостояние «челноков»
В свое время эксперты НАСА, как и многие другие специалисты, полагали, что с появлением космического корабля «Спейс Шаттл» должен произойти качественный скачок в использовании околоземного пространства.
Во-первых, космический самолет, прозванный «челноком», вероятно, за принципиальную возможность сновать туда-сюда, на орбиту и обратно, не менее 100 раз, должен был по идее упростить и удешевить доставку на орбиту самого различного снаряжения.
Во-вторых, это хороший инструмент для инспекции, захвата или ремонта прямо на месте различных спутников, внеземных лабораторий и т. д. Это, кстати, было доказано на практике — американские астронавты дважды ремонтировали космический телескоп «Хаббл» и ныне рассматривается возможность третьей экспедиции для той же цели.
В-третьих, не будем забывать — и специалисты явно имели такую возможность в уме — «Спейс Шаттл» мог в принципе использоваться и в качестве космического истребителя-бомбардировщика.
В начале работ по шаттлу на конкурсной основе было рассмотрено несколько предложений от ведущих аэрокосмических фирм США.
Так, по проекту фирмы «Норт Америкен» предлагался космический корабль, рассчитанный на двух пилотов и 10 пассажиров. Его двигатели должны были работать на смеси сжиженных газов — кислорода с водородом. Стартовать и садиться он должен был, подобно обычному самолету.
Специалисты фирмы «Макдоннелл-Дуглас» предложили комбинированный двухступенчатый аппарат, разгонная и орбитальная ступени которого должны были заходить на посадку с помощью воздушно-реактивных двигателей.
Однако чем больше занимались специалисты НАСА проектами многоразовых транспортных космических кораблей (МТКК), тем становилось очевиднее: стартовать комплекс должен, словно ракета, вертикально и с помощью стартовых ускорителей. Иначе на орбиту ему попросту не подняться.
Предпочтение в конце концов было отдано двум вариантам, различавшимся лишь конструкцией разгонной ступени, — либо с ракетными двигателями на твердом топливе, либо на жидком. Выбрали твердотопливные как более простые. Хотя во втором варианте предусматривалось спасение разгонных ступеней с ЖРД после приводнения их в океане и повторное использование после восстановления.
Контракт на проектирование транспортного корабля НАСА выдало компании «Норт Америкен», которая запросила за такую работу на миллиард долларов меньше, чем другие.
Согласно проекту, космическая система должна состоять из орбитальной ступени, внешнего сбрасываемого топливного бака и двух разгонных РДТТ.
Орбитальная ступень построена по самолетной схеме «бесхвостки» с треугольным крылом. Ее длина — 33,5 м, высота 16,7 м, размах крыла — 24 м. В центральной части фюзеляжа размещен грузовой отсек размером 18,3 х 4,5 м. В нем можно разместить груз массой до 29,5 т.
В хвостовой части корпуса располагаются двигатели различного назначения, а в носовой — кабина экипажа вместимостью до 8 человек. Приборы и органы управления для командира и его помощника полностью дублированы.
Внешний топливный бак длиной около 57 м, диаметром 7,9 м и массой около 31,7 т содержит жидкие кислород и водород для питания основной двигательной установки орбитальной ступени. Он изготавливается из алюминиевого сплава и имеет теплозащитное покрытие на основе полиуретана.
Наконец, разгонные двигатели на твердом топливе, которые до старта крепятся к топливному баку, имеют длину около 46 м, диаметр — 3,96 м. Они включаются на старте одновременно с двигателями главной двигательной установки и работают до высоты примерно 40 км. После чего их сбрасывают и они приводняются с помощью парашютной системы.
На начальной стадии эксплуатации предполагалось осуществлять не более 10 запусков транспортного корабля в год, а затем — до 60 запусков ежегодно.
Однако по ходу разработки стоимость проекта возросла с 5,2 млрд долларов (1971 год) до 10,1 млрд долларов (1982 год). Выросла и цена одного запуска, причем очень существенно — с 10,5 млн до 240 млн долларов!
Поэтому для начала решили изготовить всего четыре аппарата. Они получили собственные имена — «Колумбия», «Дискавери», «Челленджер» и «Атлантис».
Неизвестно, подгадывали ли американцы дату специально, но первый космический старт «челнока» «Колумбия» состоялся 12 апреля 1981 года — ровно через 20 лет после полета Ю. А. Гагарина. Шаттл провел в космосе более двух суток и благополучно возвратился, приземлившись на специально подготовленную посадочную полосу.
Однако как ни старались американцы выйти на заявленные 60 полетов год, им это так и не удалось. Более того, в ходе эксплуатации системы «Спейс Шаттл» выяснилось, что она имеет довольно низкую надежность, особенно во время запуска. Это в конце концов обернулось катастрофой «Челленджера», случившейся 28 января 1986 года при двадцать пятом запуске. Погибли 7 американских астронавтов, а только прямые убытки от катастрофы «Челленджера» составили почти 2 млрд долларов.
Полеты пришлось приостановить, и в течение двух с лишним лет американцы модернизировали свои аппараты. Кроме того, для восполнения потерь им пришлось построить пятый орбитальный самолет, получивший название «Индевер».
Тем не менее шаттл все еще казался грозной военной силой. Ведь даже габариты его грузового отсека были выбраны с учетом возможности захвата советской военной орбитальной станции «Алмаз». Кроме того, в таком грузовом отсеке, по расчетам, можно было разместить до 30 ядерных управляемых боеголовок.
Естественно, власти СССР не могли оставить такую угрозу без внимания. Исследования, проведенные по просьбе Политбюро ЦК КПСС в Институте прикладной механики АН СССР, под руководством академика М. В. Келдыша, показали: «Спейс Шаттл» в принципе действительно мог во время возврата с орбиты по трассе, проходящей над Москвой и Ленинградом, сделать «нырок» и сбросить бомбу прямо на один из этих городов.
По результатам анализа в ЦК КПСС состоялось совещание, в результате которого Л. И. Брежнев принял решение о разработке «комплекса альтернативных мер с целью обеспечения гарантированной безопасности страны».
Так начались работы над советским «челноком».
Головным предприятием по разработке многоразовой космической системы, аналогичной американскому транспортному кораблю «Спейс Шаттл», было выбрано Научно-производственное объединение «Энергия» под руководством В. М. Глушко.
Конструкторы НПО «Энергия», получив в 1974 году такое задание, предложили поначалу построить бескрылый космический аппарат, аэродинамическая подъемная сила которого на посадке обеспечивалась уплощенной поверхностью нижней части самого фюзеляжа. Крылья наши конструкторы посчитали излишней роскошью, лишь затрудняющей выведение аппарата в космос.
Кроме того, такая конструкция позволяла «посадить» корабль на «нос» ракете-носителю, а не цеплять его сбоку, что значительно ухудшало полетные качества комплекса.
Однако «сверху» поступила команда: «Делайте, как у американцев…» Официальным прикрытием указания двигаться по проторенной дорожке, по возможности копировать зарубежный образец, послужило такое соображение. Вон, дескать, у американцев авиабазы по всему миру разбросаны, так что им есть где приземлиться при любом раскладе событий, и то они сделали аппарат с крыльями, чтобы тот смог дотянуть до родного аэродрома. У нас же всего три 5-километровых посадочных полосы: в Подмосковье (аэродром ЛИИ в Жуковске), в Крыму и на Байконуре. «И ваш „бескрылый“ в случае аварийной посадки может плюхнуться, где попало. А на крыльях, глядишь, все-таки долетит, куда надо…»
В итоге сегодня лишь опытный глаз может найти разницу между нашим «челноком» и их шаттлом.
Правда, на одном существенном отличии В. М. Глушко все же настоял. Пользуясь случаем, он протолкнул проект своей сверхмощной ракеты «Энергия», способной поднять 100 т любой полезной нагрузки, будь то «челнок», названный «Бураном», или нечто другое.
В результате аппаратных игр 17 февраля 1976 года вышло постановление ЦК КПСС и Совета Министров СССР № 132–51 о разработке советской многоразовой космической системы «Рубин», включавшей орбитальный самолет, ракету-носитель, а также всевозможные комплексы — стартовый, посадочный, наземного обслуживания, командно-измерительный и поисково-спасательный. Система должна была обеспечивать выведение на северо-восточные орбиты высотой 200 км полезных грузов весом до 30 т и возвращение с орбиты грузов до 20 т.
В постановлении, в частности, предлагалось организовать в Министерстве авиационной промышленности Научно-производственное объединение «Молния» во главе с авиаконструктором Г. Е. Лозино-Лозинским. НПО должно было сконструировать орбитальную ступень и подготовить комплект документации для ее изготовления.
Само изготовление и сборка планера, создание наземных средств его подготовки и испытаний, а также воздушная транспортировка на Байконур были поручены Тушинскому машиностроительному заводу.
Главная роль в разработке ракеты-носителя и общее руководство за сборкой системы в целом оставались за НПО «Энергия». Заказчиком проекта выступало Министерство обороны.
Окончательный проект был утвержден В. М. Глушко 12 декабря 1976 года. Летные испытания планировалось начать во втором квартале 1979 года.
«Буран» рассчитывался опять-таки на 100 рейсов и мог выполнять полеты как в пилотируемом, так и в автоматическом варианте. Максимальное количество членов экипажа — 10 человек, при этом шестеро из них могли быть космонавтами-исследователями. Расчетная продолжительность полета 7–30 суток. При посадке, обладая достаточными аэродинамическими качествами, корабль мог совершать маневр в атмосфере до 2000 км.
Заход на посадку был выверен не только теоретически, но и практически, с помощью летающего аналога «челнока». Первым испытателем корабля-аналога стал Игорь Волк, руководитель группы кандидатов на полеты по программе «Буран», в которую кроме него входили Римантас Станкявичюс, Александр Щукин, Иван Бачурин, Алексей Бородай и Анатолий Левченко.
Некоторые из испытателей даже совершили тренировочные полеты на орбиту на кораблях «Союз».
За время подготовки программа первого полета орбитального самолета «Буран» неоднократно пересматривалась. В конце концов остановились на самом простом: «Буран» взлетает, делает виток и садится в автоматическом режиме.
Тем временем возникла еще одна проблема. Умер В. М. Глушко, и встал вопрос, кто встанет у руля НПО «Энергия»? Заместителю Юрию Семенову предстояло доказать, что он достоин этого поста, что оказалось совсем непростым делом.
Как водилось в СССР, запуск космического самолета хотели приурочить к очередной годовщине Октябрьской революции. Поэтому к 9 октября работы по подготовке комплекса «Энергия-Буран» были завершены, и утром 10 октября огромный установщик массой 3,5 тысячи тонн с ракетой и кораблем с помощью четырех синхронизированных мощнейших тепловозов поплыл в сторону старта.
Спустя две недели, 26 октября, Государственная комиссия на основе докладов о готовности систем ракеты-носителя, орбитального корабля и комплекса в целом разрешила техническому руководству приступить к заключительным операциям, заправке и осуществлению пуска комплекса «Энергия-Буран» под индексом «1Л» 29 октября 1988 года в 6 часов 23 минуты.
Однако утром 29 октября, когда уже начались автоматические операции подготовки старта, прошла команда «отбой» из-за неготовности одной из систем.
Сначала старт перенесли на 4 часа, а потом и вообще отменили. Пришлось сливать топливо и проводить проверку по полной программе. Следующую попытку запустить комплекс «Энергия-Буран» смогли предпринять лишь 15 ноября 1988 года, спустя неделю после праздников.
Но тут возникли опасения неудачи из-за погоды. Задул почти ураганный ветер, рвущий крыши со зданий. Метеорологи выдали штормовое предупреждение.
Тем не менее специалисты, создавшие орбитальный корабль, заверили членов Государственной комиссии, что запуск, а главное — спуск «Бурана» можно осуществить и в таких погодных условиях.
И в самом деле, в 6 часов 00 минут по московскому времени ракетно-космический комплекс «Энергия-Буран» оторвался от стартового стола и почти сразу же скрылся в низких облаках. Через 8 минут «Буран» вышел на орбиту и начал первый самостоятельный полет.
В ходе его было осуществлено два маневра, после чего «Буран» стабилизировался кормой вперед и вверх. В 8 часов 20 минут в последний раз включился маршевый двигатель. Корабль начал снижение и через полчаса вошел в атмосферу. За время снижения до высоты 100 км реактивная система управления развернула «Буран» носом вперед. В 8 часов 53 минуты на высоте 90 км с ним прекратилась связь — плазма, как известно, не пропускает радиосигналов.
Она возобновилась в 9 часов 11 минут, когда корабль находился на высоте 50 км, в 550 км от взлетно-посадочной полосы и его скорость примерно в 10 раз превышала звуковую.
Заход на посадку проходил строго по расчетной траектории снижения. Включились бортовые и наземные средства радиомаячной системы. «Буран» вышел на посадочную глиссаду, отработанную в ходе полетов атмосферного корабля-аналога.
Проконтролировать снижение «Бурана» вылетел самолет сопровождения «МиГ-25», пилотируемый летчиком-испытателем Толбоевым. Вскоре в ЦУПе на телеэкранах увидели четкое изображение корабля, передаваемое с борта самолета. Буран выглядел целым и невредимым.
В 9 часов 24 минуты 42 секунды, после прохождения почти 8000 км в верхних слоях атмосферы, опережая всего на одну секунду расчетное время, «Буран» коснулся взлетно-посадочной полосы и, выбросив тормозной парашют, вскоре остановился. Программа первого испытательного полета была выполнена.
Кстати, не верьте, что на борту корабля все же находился человек, который и подправил полет советского «челнока» в самый ответственный момент. Автоматика блестяще со всем справилась сама.
После этого, казалось бы, самое время наращивать первоначальный успех. Однако история распорядилась иначе. Идея боевого противостояния двух «челноков» оказалась уже не актуальной: в мире началась разрядка.
И новый руководитель советского государства М. С. Горбачев счел ненужным тратить огромные средства на сверхдорогие полеты «Бурана». Тем более что гражданских грузов для него не нашлось. Те, что имелись, было куда проще и дешевле отправлять на орбиту прежними ракетами, летающими врт уже полвека.
Корабли НАСА
Американцы после двух катастроф, стоивших жизни 15 астронавтам, после многочисленных переделок тоже спохватились. Принято решение поставить на прикол в скором времени все еще остающиеся в эксплуатации три шаттла, а вместо них разработать что-либо получше.
Так, в 2002 году представители фирмы Lockheed Martin приподняли завесу тайны над проектом, который заменит старый шаттл.
В самом начале нынешнего столетия NASA объявило о конкурсе на новый обитаемый исследовательский космический аппарат (CEV). Поначалу было предложено полтора десятка вариантов, из которых было выбрано два наиболее перспективных. Один проект предоставлен группой специалистов во главе с компанией Lockheed Martin, а другой — специалистами из Northrop Grumman и Boeing.
Выбор окончательного победителя намечен на 2008 год, а в первый полет новый аппарат отправится еще шесть лет спустя, в 2014 году.
Наипервейшее требование агентства, наученного горьким опытом, формулировалось так: «обеспечить безопасность команды на всех этапах экспедиции».
Команда Lockheed выдвинула концепцию трехступенчатого аппарата. Титановый модуль для экипажа должен вмещать от 4 до 6 астронавтов. Он запускается отдельно от экспедиционного модуля и двигательной ступени. Встречаться они должны уже на орбите, и после стыковки из них получится 20-метровый корабль весом почти 40 тонн. Новый CEV не предназначен Для того, чтобы при входе в атмосферу и при посадке планировать, как это делает нынешний «челнок». Он оборудован парашютами и воздушными подушками, что дает возможность для посадки как на землю, так и на воду.
И, наконец, долгожданное новшество: модернизация затронет энергоустановку, которая сможет обеспечивать электричеством корабль во время очень долгих космических экспедиций, и систему самодиагностики, которая будет выявлять и устранять возникающие неисправности. «Просто улететь в космос — это еще не самое интересное», — так говорит Пат Маккензи, бизнес-менеджер программы СБУ в компании Lockheed.
Проект, предложенный компанией Boeing, представляет собой модель двойного назначения. Шаттл сможет и выводить на орбиту искусственные спутники, и доставлять астронавтов на Международную космическую станцию. Причем разработка предусматривает отказ от ручного пилотирования, что позволяет исключить ошибки астронавтов и сэкономить топливо. Кроме того, новые ракетоносители будут работать на керосине и жидком водороде и после старта с них шаттла будут возвращаться на базу и приземляться, словно обычные самолеты. Просматривается также идея, предложенная Лозино-Лозинским, — воздушный старт «челнока» со спины самолета-носителя.
Не позабыты, впрочем, окончательно и проекты прошлых лет, из которых будет взято все лучшее.
Например, еще один проект предусматривает создание «спасательной шлюпки для МКС» в виде космоплана Х-38. Он может быть использован и в качестве транспортного корабля, выводимого в космос ракетой-носителем «Ариан-5» («Ariane 5»).
Главной «изюминкой» проекта является использование гибкого крыла — параплана — в качестве тормозящего и посадочного средства. Первые испытания такого крыла состоялись в 1996 году, а первые полеты Х-38 на подвеске самолета В-52 начались в феврале 1997 года.
Спасательный космоплан Х-38 не имеет собственных двигателей и представляет собой летательный аппарат с несущим корпусом. Возвращение на Землю будет проходить по той же схеме, как и возвращение «Спейс Шаттла». И только на завершающем этапе будет выпускаться параплан. На Х-38 не будет ручного управления — процедура входа в атмосферу и спуск предполагается полностью автоматизировать.
Габариты Х-38: длина — 8,7 м, диаметр — 4,4 м, масса — 8163 кг. Количество спасаемых астронавтов — до 6 человек. Система жизнеобеспечения рассчитана на четыре дня. Продолжительность эксплуатации в качестве модуля «МКС» — 4000 суток.
Испытания демонстрационной модели космоплана Х-38 проводились в Летно-исследовательском центре НАСА имени Драйдена, расположенном на территории базы ВВС «Эдварде» (штат Калифорния).
В марте 1998 года первую модель постигла неудача: во время самостоятельного полета парашют-крыло был поврежден и Х-38 разбился. После этого было принято решение об укреплении его конструкции. Уже в феврале 1999 года вторая модель, получившая условное обозначение V-132, была готова к испытаниям.
Первый самостоятельный полет второй модели состоялся 6 февраля 1999 года. Х-38 отделился от самолета-носителя В-52 на высоте 6700 метров. Несколько минут он находился в свободном полете, после чего над ним раскрылся параплан, и через 12 минут Х-38 приземлился.
Ныне же, пока испытания Х-38 продолжаются, роль «спасательной шлюпки» на Международной космической станции исполняет российский космический корабль «Союз».
В марте 1999 года американская компания «Ротари Рокет», которую возглавляет известный специалист по аэрокосмической технике Гарри Хадсон, продемонстрировала еще один уникальный опытный образец.
В отличие от традиционных шаттлов новый корабль, получивший название «Ротон», не имеет узлов, отстреливаемых во время полета. Весьма оригинальна и двигательная установка аппарата. Ее основой служит 7-метровый вращающийся диск, по окружности которого размещено 96 ракетных двигателей с камерами сгорания размерами с… консервную банку каждый!
Компоненты топлива — керосин и жидкий кислород — поступают в них под действием центробежной силы. Поэтому перед взлетом диск с двигателями раскручивается от внешнего привода на стартовой площадке. Вращение диска в полете поддерживается благодаря тому, что каждое из сопел чуть наклонено в одну сторону. Создаваемый таким образом гироскопический момент помогает кораблю устойчиво держаться на курсе.
Корпус нового аппарата почти целиком изготовлен из композитного материала на основе углеродных волокон и эпоксидных смол. Благодаря этому он получился очень легким и в то же время прочным.
После того как экипаж выполнит полетное задание, он начинает готовиться к спуску. Для этого «Ротон» разворачивают задом наперед. Тяговые двигатели становятся теперь тормозными, и корабль постепенно начинает спускаться с орбиты по пологой спирали. Перед входом в плотные слои атмосферы экипаж раскрывает четыре складывающиеся 7-метровые вертолетные лопасти, расположенные на носу (который стал при спуске кормой). По мере того как нарастает плотность окружающего воздуха, лопасти раскручиваются, тормозя падение аппарата. И он совершает плавный спуск в режиме авторотации (то есть лопасти вращаются свободно, без помощи двигателя).
Впрочем, в будущем Хадсон намерен увеличить длину каждой лопасти до 9,5 м и установить на их концах небольшие реактивные двигатели. Таким образом экипаж аппарата получит возможность не только маневрировать при спуске, но взлетать по-вертолетному. И лишь поднявшись на высоту около 5 км, астронавты запустят основные ракетные двигатели и поднимутся на орбиту.
В середине 2000 года компания «Ротари Рокет» планировала построить еще три «Ротона». Один из них должен был служить тренажером для подготовки экипажей, а два других начали готовить уже к полномасштабным полетам в космос. Хадсон надеялся, что каждый из таких аппаратов сможет совершить до 100 запусков на орбиту без капитального ремонта.
Однако испытания опытного образца «Ротона» показали недостаточную надежность системы. И ее внедрение в практику приостановлено. Тем более что очередная катастрофа — на сей раз с шаттлом «Колумбия» — заставила специалистов НАСА вновь отставить многие планы и заняться очередной модернизацией «челноков».
Запад соревнуется с востоком
Видя, что работы над новым поколением шаттла у американцев продвигаются с переменным успехом, европейские конструкторы попытались продвинуть собственные проекты. Так на конференции Европейского космического агентства, проходившей в Риме в 1985 году, Франция проинформировала партнеров о своем намерении начать создание корабля «Гермес», который должен выводиться в космос ракетой-носителем «Ариан-5». Два года спустя собравшиеся в Гааге представители агентства согласились сделать проект общеевропейским.
«Гермес» представляет собой воздушно-космический самолет с низко расположенным крылом большой стреловидности, выполненный по аэродинамической схеме «бесхвостка». По идее при старте он должен устанавливаться на носу ракеты-носителя.
Возможность бокового маневра при возвращении корабля на Землю с орбиты должна составить 1500–2000 км. Полная масса орбитального корабля — 21 т, полезная нагрузка около 3 т.
Однако из-за серии неудачных запусков самого носителя осуществление программы «Гермес» все еще остается под вопросом.
Попытались было осуществить свою программу создания космического самолета и конструкторы Великобритании. Еще в 1965 году они предложили проект воздушно-космического корабля «Мустард» («Mustard»), предназначенного для вывода полезного груза массой около 3 т на орбиту высотой около 550 км.
«Мустард» состоит из трех пилотируемых ступеней, аналогичных по конструкции и геометрическим размерам. Масса каждой — около 137 т. При этом на орбиту выводится лишь верхняя ступень, а две предыдущие выполняют лишь функции разгонных.
После выполнения своих функций первые ступени должны были возвращаться в район старта подобно самолетам. Аналогично производила бы спуск с орбиты и третья ступень.
Однако осуществление этой программы оказалось очень дорогим, и вскоре оно было приостановлено.
Тогда внимание британцев стал занимать проект «ХОТОЛ» («HOTOL»). Работы по нему были начаты в 1982 году по инициативе фирм «Бритиш аэроспейс» и «Роллс-Ройс», которые провели поисковые исследования по одноступенчатым аппаратам с горизонтальными взлетом и посадкой.
Предполагалось, что стартовать «ХОТОЛ» длиной в 62 м будет либо с разгонной аэродромной тележки, либо с самолета-носителя. Длина взлетной полосы — до 4 км. Эксплуатационный ресурс — 120 полетов. Масса полезной нагрузкй — порядка 11 т.
Высокая экономичность «ХОТОЛа» должна была достигаться за счет использования лишь многоразовых моделей и упрощения предполетной подготовки. Однако специалистам до сих пор так и не удалось создать хотя бы прототип маршевого кислородно-водородного двигателя «HOTOL RB454», способного функционировать и как воздушно-реактивный и как ракетный. А потому с конца 80-х годов XX века проект находится в замороженном состоянии.
Не забывают о своем славном прошлом и немецкие конструкторы. Одной из первых попыток ФРГ вернуться в разряд космических держав был проект одноступенчатого космического корабля многократного использования «VETA».
Конструкция корабля базировалась на технике и технологии ракеты «Сатурн-5», созданной под руководством Вернера фон Брауна, и отсеков кораблей «Аполлон». Однако поняв, что американцы вовсе не склонны делиться космическими секретами, немецкие конструкторы отказались от первоначальных намерений и занялись проработкой воздушного старта с помощью самолета-носителя. Так, в 1965 году вниманию публики был представлен проект фирмы «Юнкерс» («Junkers»). Космическая система была спроектирована в виде двухступенчатого космического самолета. Планировалось, что он будет стартовать горизонтально с рельсовой катапульты и в момент разделения ступеней достигнет высоты 60 км за 150 секунд. Нижняя ступень, планируя, возвратится на базу, а верхняя выйдет на орбиту высотой 300 км, неся с собой около 2,5 т полезного груза.
Однако и этому проекту не суждено было сбыться из-за трудностей финансово-технического характера.
Тогда в середине 80-х годов XX века исследователи решили вернуться к идее доктора Зенгера, значительно модернизировав ее. Проект «Зенгер» («Sanger») представляет собой двухступенчатую космическую систему с возможностью горизонтального старта с обычных аэродромов.
Применение в маршевых двигателях экологически чистых компонентов топлива — жидких кислорода с водородом — исключает выброс в атмосферу вредных продуктов сгорания.
По идее первая ступень EHTV массой 259 т представляет собой двухкилевый самолет стреловидной формы. Разгонять его должны пять комбинированных турбопрямоточных воздушно-реактивных двигателей. Дальность полета — 10 000 км. Скорость — 4,5 М (т. е. более чем вчетверо превышает звуковую), высота полета — 25 км. Причем рассматривался вариант создания на базе этой конструкции и гиперзвукового пассажирского самолета, способного доставить 250 пассажиров за три часа из Франкфурта-на-Майне до Токио через Лос-Анджелес.
Вторая ступень «Хорус» («Horus») — пилотируемый космический аппарат, во многом сходный с «Шаттлом» и «Гермесом». Расчетная продолжительность орбитального полета — одни сутки. Экипаж — два пилота, четыре пассажира и до 3 т груза.
Одновременно с «Хорусом» немецкие конструкторы спроектировали и грузовой аппарат «Каргус» («Cargus») одноразового использования. Он предназначен для выведения на орбиту до 15 т полезного груза.
В настоящее время проведено свыше четырех десятков экспериментальных пусков прототипа системы. Большинство их прошли вполне благополучно. Однако для создания самой системы ни у ФРГ, ни у Европейского космического агентства нет достаточного количества свободных средств.
Не оставляют своих надежд выйти в космос со своими многоразовыми кораблями и страны Юго-Восточной Азии.
Первыми о своем выходе на космический рынок заговорили японцы. Авиационно-космические фирмы Страны восходящего солнца приступили к реализации программы научно-исследовательских и опытно-конструкторских работ в области гиперзвуковой техники еще в 1986 году.
Причем японцы размахнулись весьма широко и вели исследования сразу по трем направлениям. В первую очередь они хотели создать беспилотный аэрокосмический самолет «Хоуп» («Норе»), который должна выводить на орбиту ракета-носитель «Н-2». Далее, к 2006 году планировалось создание универсального одноступенчатого пилотируемого аэрокосмического самолета с горизонтальными взлетом и посадкой. И, наконец, японцы планировали создание ряда аппаратов для обследования Луны и других планет Солнечной системы.
Начали свою деятельность специалисты Страны восходящего солнца с того, что в 1994 году отправили в космос самую настоящую «летающую тарелку». Правда, официально аппарат назывался «ОРЕХ» (сокращение от английского названия Orbital Re-Entry Experiment). Но по внешнему виду то была действительно «тарелка» — диск диаметром 3,4 м.
Ракета «Н-2» вывела «ОРЕХ» на орбиту высотой в 450 км. И оттуда «тарелка» стала планировать вниз. Через 2 часа она приводнилась в Тихом океане. В момент прохождения плотных слоев атмосфере диск раскалился до 1570 °C, но тем не менее телеметрическая аппаратура на борту сохранила свою работоспособность.
В 1996 году ракета-носитель «J-1» вывела в космос следующий аппарат — «HYFLEX» (Hypersonic Flight Experiment). Этот аппарат был уже похож на цилиндр с заостренным носом. На высоте 110 км он отделился от носителя и спикировал вниз, развив скорость до 15 М. Затем была раскрыта парашютная система, и аппарат приводнился. Однако в самом конце эксперимента произошла неприятность: несмотря на специальный мешок для обеспечения плавучести, аппарат утонул.
После этого японцы перенесли эксперименты на сушу. И с июля по август того же 1996 года было проведено три эксперимента в рамках проекта «ALFLEX». Новый аппарат уже походил на небольшой самолет с крыльями. Его прицепляли к вертолету, поднимали на высоту в несколько километров и сбрасывали. Автоматическая система управления приводила аппарат на посадочную полосу, где он и приземлялся.
И, наконец, осенью 2002 года была проведена серия экспериментов по программе «HSFD Phase-I». Модель представляла собой уменьшенную копию космического самолета с собственным реактивным двигателем. Он может сам взлетать, следовать по маршруту и садиться в заданном месте.
Вслед за ним взлетел и «HSFD Phase-II». Первая попытка прошла неудачно. Зато вторая оказалась вполне благополучной. В дальнейшем, как полагают, этот самолет будет с помощью стратостата поднят на высоту порядка 30 км и сброшен оттуда для дальнейшей отработки системы автоматической посадки.
Затем, согласно программе, в полет отправится «TSTO» — аппарат, во многом похожий на наш «Буран», но принципиально беспилотный. То есть в нем вообще не предусмотрена кабина для экипажа.
Все эти эксперименты являются последовательными шагами по осуществлению программы создания настоящего космического «челнока» «НОРЕ-Х». Еще этот аппарат японцы называют «Надежда», подчеркивая тем самым, что именно с ним связывают свои надежды на освоение космического пространства.
Однако на сегодняшний день ни по одному из вышеназванных направлений особыми успехами японские исследователи похвалиться не могут. Их преследует длинная цепь технических неудач, заставляющая конструкторов, по существу, топтаться на месте. Дело дошло уж до того, что японцы, как сообщало ИТАР-ТАСС, решили позаимствовать для своей ракеты «Джей-2» двигатели советского производства НК-33.
Запуск же собственного пилотируемого многоразового космического корабля отложен аж на 2020 год.
Тем временем извечные конкуренты японцев китайцы, воспользовавшись предоставленной им советской технологией, смогли значительно продвинуться вперед за последние годы.
Правда, особых подробностей о ней не расскажешь, поскольку китайская космическая программа, которая называется «Проект 921», окутана покровом строжайшей тайны. Декларируется лишь цель: Китай должен стать третьим государством после России и США, способным запускать человека на орбиту. В планах — создание собственной постоянно работающей орбитальной станции (в проекте МКС Китай не участвует). На высшем уровне обсуждаются полеты пилотируемых и автоматических кораблей на Луну и Марс и даже высадка «тайконавтов» на Луну. Каждый космический старт — а их было уже почти 50 — сопровождается громогласными пропагандистскими декларациями, хорошо знакомыми нам по прежним временам…
О сотрудничестве Китая с США в космонавтике ничего не известно. Но у России Китай позаимствовал немало. Главными инструкторами в китайском ЦПК работают обучавшиеся в середине 90-х. в Звездном городке У Цзе и Ли Цинлун. После подписания 25 апреля 1996 года закрытого соглашения с Россией у нас были приобретены аппаратура систем сближения и стыковки, средств жизнеобеспечения, управления полетом и даже макет корабля «Союз ТМ». Что касается ракеты «Чан Чжэн» («Великий поход»), которая выводит в космос «Шэнь Чжоу» («Волшебный корабль»), то она во многом подобна советской ракете УР-200, оснащенной четырьмя навесными жидкостными ускорителями.
Первый старт «Шэнь Чжоу» состоялся в ноябре 1999 года. И уже пятый старт намечено провести в пилотируемом режиме. В СССР перед полетом Гагарина было выполнено семь беспилотных пусков, США испытывали системы перед полетом Гленна 21 раз. С другой стороны, «Шэнь Чжоу» находится на орбите значительно дольше, чем первые советские и американские корабли. До своего приземления у Великой Китайской стены «Шэнь Чжоу-3» колесил в космосе почти неделю.
Примерно столько же — 162 часа — оставался в космосе и следующий китайский корабль — «Шеньджоу-4», запущенный в ночь на 30 декабря 2002 года с Цзюцюанского космодрома с помощью ракеты-носителя «Великий поход-2Ф». На борту корабля имелись биологические объекты — в частности, семена и образцы 100 видов сельскохозяйственных культур и растений — риса, пшеницы, хлопка, кукурузы, соевых бобов, овощей, фруктов и цветов.
Поговаривали, что то был последний испытательный полет, перед тем как в космос на «Волшебном корабле» полетят уже не манекены, а настоящие космонавты. Точнее — тайконавты. Именно так китайцы намерены называть своих соотечественников, которые должны летать на орбиту.
«Тайкон» — по-китайски «космос». Так что китайцы в какой-то степени копируют российское название. На Западе, как известно, прижилось другое название — астронавты.
Впрочем, как подмечают эксперты, сходство российских и китайских проектов не только в этом. По телевидению был показан короткий ролик, в котором продемонстрировано, как два китайца кувыркаются в невесомости на борту специального самолета-лаборатории, точно так, как это делали наши космонавты.
Впрочем, сам полет первого китайского тайконавта Яна Ливэя, предпринятый в конце 2003 года, отличался от полета Юрия Гагарина. Китаец находился в космосе гораздо дольше, совершив свыше десятка оборотов вокруг Земли.
Поговаривают, что в следующих полетах китайцы постараются выйти в открытый космос. И вообще они, похоже, не собираются ограничиваться полетами лишь вокруг Земли. По имеющимся данным, в будущем китайцы намерены создать свою собственную орбитальную станцию, а потом и отправить людей на Луну. Вполне возможно, что при этом они вступят в кооперацию со своими японскими соседями. Ведь в одиночку осилить такие проекты накладно даже для страны с миллиардным населением.
Кроме того, китайские конструкторы намерены создать и свою двухступенчатую космическую систему с горизонтальными стартом и посадкой — проект «921–3».
Китайский аэрокосмический аппарат внешне напоминает немецкий двухступенчатый воздушно-космический самолет «Зенгер», однако отличается от него оригинальной конструкцией смешанной двигательной установки, состоящей из жидкостных ракетных и прямоточных двигателей.
Первая гиперзвуковая разгонная ступень (самолет-разгонщик) будет иметь фюзеляж типа «несущий корпус» (длиной около 85 м и шириной 12 м) и треугольное крыло двойной стреловидности. Двигательная установка разгонщика имеет шесть двигателей с суммарной тягой около 40 т. Стартовая масса — 330 т, посадочная — 79 т.
Вторая ступень представляет собой орбитальный самолет со стартовой массой 132 т, который оснащен четырьмя кислородно-водородными двигателями. Внешне он похож на американский «Спейс Шаттл».
После разделения самолет-носитель возвращается к месту старта, используя только прямоточные двигатели. Орбитальный самолет, используя четыре кислородно-водородных двигателя с тягой по 2,1 т, выходит на эллиптическую орбиту высотой от 100 до 300 км.
Предполагается, что китайский «челнок» сможет выводить на орбиту груз до 6 т весом. Специальный космодром для китайского корабля многоразового использования строится в Южно-Китайском море на острове Хайнань.
Наследники «Бурана»
Ну а что предлагают на сегодняшний день наши конструкторы? Оказывается, и у нас имеется немало проектов, достойных похвалы за свои оригинальные идеи и рекордные показатели. Упомянем хотя бы некоторые из них.
Так, на основе опыта по созданию орбитального корабля «Буран» в НПО «Энергия» по указанию главного конструктора Юрия Семенова и под руководством Павла Цыбина с 1984 по 1993 год был разработан ряд проектов многоразовых кораблей малой величины с массами от 15 до 32 т.
Например, аэродинамическая схема пилотируемого многоразового корабля «ОК-М» была аналогична аэродинамической схеме корабля «Буран». Но поскольку его габариты (длина — 15 м, высота — 5,6 м, размах крыла — 10 м, масса полезного груза — до 3,5 т, состав экипажа 2 пилота, 4 космонавта-исследователя) были существенно меньше, то в качестве носителя вполне могла бы использоваться двухступенчатая ракета «Зенит» конструкции НПО «Энергия».
Среди относительно недавно выдвинутых проектов воздушно-космических самолетов в особую группу можно выделить аппараты, разрабатываемые в авиационном конструкторском бюро имени Микояна — «МиГ-2000» и «МиГ-АКС».
Первый представляет собой одноступенчатый воздушно-космический самолет со взлетным весом 300 т, способный выводить полезную нагрузку до 9 т на орбиту высотой 200 километров с наклонением 51°. Второй вариант — это двухступенчатый воздушно-космический самолет, создаваемый на основе оригинальной концепции электромагнитной левитации «ЭТОЛ».
Эта концепция была впервые продемонстрирована специалистами КБ имени Микояна и ЦАГИ на Международном авиакосмическом салоне в Жуковском, летом 1999 года. Согласно ей, летательные аппараты должны садиться и взлетать с электромагнитной ВПП, позволяющей ускорить разгон при взлете и обеспечить торможение при посадке с помощью известного принципа взаимодействия движущегося тела с магнитным полем. Идея была уже испытана в лаборатории на алюминиевых макетах «электромагнитного беспилотного моноплана» массой до 10 кг, который разгоняли и тормозили на полосе длиной 5 м.
Реальная же разгонная ВПП должна быть длиной 4 км. Найдутся ли на нее деньги, а главное, сможет ли наша промышленность создать сверхпроводящие магниты, которые позволят за 10–15 секунд осуществить взлет самолета массой до 700 т, пока еще большой вопрос.
Пока специалисты пытаются проверить на практике методику электромагнитных запусков на сравнительном небольшом многоцелевом беспилотном самолете, который можно использовать для военной и геологической разведки, мониторинга окружающей среды и т. д.
Однако и эта разработка продвигается с трудом из-за отсутствия должного финансирования.
Кроме самолетных схем, конструкторы давно уже хотели поменять нынешний «Союз» на что-либо более комфортабельное. Одним из вариантов был проект многоразового транспортного корабля «Заря», запускаемого на орбиту с помощью ракеты «Зенит».
Его предполагалось создавать в два этапа: сначала — базовый многоразовый пилотируемый транспортный корабль, затем его модификации для решения специальных задач.
Работы над ним начались в 1987 году, еще под личным контролем Генерального конструктора В. М. Глушко. Считалось, что он вполне сможет быть использован для доставки на орбиту экипажей численностью до 8 человек.
Однако в январе 1989 года тема была закрыта. Официальная причина — опять-таки отсутствие денег на проект.
Впрочем, опыт, накопленный в ходе работ по орбитальным кораблям типа «ОК-М» и «Заря», позволил выдвинуть новый перспективный проект корабля многоразового использования. Он обсуждался в НПО «Энергия» в 1991 году, но, к сожалению, не получил поддержки ведущих конструкторов.
Тем не менее концепция «ВКК» («Воздушно-космический корабль») заслуживает внимания, поскольку может оказаться весьма перспективной в будущем.
По идее такой корабль должен состоять из двух аппаратов-модулей; один — крылатый, другой выполнен по схеме несущего корпуса. При этом модули соединены не последовательно, а параллельно — один над другим. Снизу — несущий корпус служебного модуля; «верхом» на нем — пилотируемый. Соединение осуществляется на пироболтах и может быть устранено одним нажатием кнопки.
Пилотируемый модуль используется многократно, служебный — один раз, причем его можно модифицировать под конкретно выполняемую задачу.
Вся эта система стартует с помощью ракеты-носителя типа «Зенит» или даже на самолете-матке. Как показывают расчеты, функционирование подобной комбинированной системы может обойтись дешевле, чем нынешние одноразовые запуски.
Новый виток интереса к подобной системе возможен в свете начавшихся испытаний системы «Байкал-Ангара», где в роли второй ступени выступает крылатая ракета, способная по идее возвращаться на аэродром. А если добавить к системе еще и небольшой «многоразовый челнок», может получиться вполне практичный комплекс для доставки людей на орбиту.
Когда в 1996 году американский фонд «Икс-прайз» («Х-Prize») учредил приз в 10 млн долларов за создание тренировочного и туристического ракетоплана, который мог бы доставить на высоту более 100 км, предварительные разработки представили до четырех десятков частных фирм, научных организаций и университетов.
Включилась в конкурс и Центральная научно-исследовательская лаборатория «Астра» Московского авиационного института. В этой лаборатории занимаются разработкой вопросов выведения в околоземное пространство малых спутников (до 100–200 кг) посредством систем «воздушного старта». Сотрудники лаборатории сочли, что «воздушный старт» будет наиболее оптимальным способом для выведения туристского ракетоплана на орбитальную высоту.
В разработке проекта приняли участие также специалисты Экспериментального машиностроительного завода имени Мясищева, ОКБ имени Микояна, ЦАГИ имени Жуковского, Института авиационной медицины и НИИ парашютостроения.
В качестве носителя выбрали истребитель «МиГ-31», который создавался для борьбы с крылатыми ракетами и сверхзвуковыми бомбардировщиками типа «Валькирия». Выводимый на орбиту объект размещается под фюзеляжем на узле подвески. Выйдя в зону пуска, «МиГ-31» набирает скорость около 2500 км/ч, поднимается на высоту 20 км и сбрасывает ракетоплан или ракету-носитель, у которых через 6 секунд включается бортовой двигатель.
В конструкции самого многоцелевого суборбитального ракетоплана «АРС» (сокращение от «Аэрокосмическое ралли») использован опыт создания предшественников нашего «Бурана» — беспилотных орбитальных прототипов системы «Бор».
Габариты «АРС»: длина — 5,8 м, ширина — 3,7 м, высота —1,5 м, взлетная масса — 1700 кг, из них 350 кг приходится на полезную нагрузку.
В передней части герметичной кабины «АРС» находится место пилота-космонавта, за ним располагаются штурман и бортинженер либо туристы. В течение трехминутного полета экипаж «АРС» проходит все стадии космического путешествия.
Предполагается, что после отделения от «МиГ-31» ракетоплан включит собственный двигатель и разовьет скорость до 1300 м/с. При этом он поднимается на высоту 120–130 км, а затем перейдет в режим планирующего спуска. Наконец, он совершает посадку на аэродром по-самолетному или приземляется с помощью крыла-парашюта.
Еще один проект в рамках конкурса «Икс-Прайс» разрабатывается в Акционерном обществе «Суборбитальная корпорация» при участии Экспериментального машиностроительного завода имени Мясищева.
По идее запуск ракетного модуля «Космополис-XXI» с пассажирской капсулой осуществляется с самолета-носителя на высотах порядка 20 км. В качестве самолета-носителя выбран высотный самолет «М-55» («Геофизика») разработки завода имени Мясищева. Его летные характеристики таковы: максимальная скорость — 2650 км/ч, практический потолок — 22 км, максимальная дальность — до 4000 км.
Ракетный модуль «Космополис-XXI» состоит из спасаемой трехместной пассажирской капсулы, двигательного блока, отсека оборудования с системами управления, жизнеобеспечения и спасения. Он устанавливается на «спину» самолету-носителю и держится до поры до времени на специальных узлах крепления, снабженных управляемыми механическими замками.
Внутри капсулы размещаются три пассажирских кресла, которые для снижения посадочных перегрузок снабжены системой демпфирования. Система жизнеобеспечения позволяет поддерживать внутри пассажирской капсулы нормальные условия для жизнедеятельности космических пассажиров без применения индивидуальных дыхательных приборов.
После сброса с самолета-носителя ракетный модуль должен набирать высоту по параболе, в верхней точке которой происходит расстыковка пассажирской капсулы и двигательного отсека. При снижении пассажирская капсула опирается на выдвижные аэродинамические плоскости, которые и обеспечивают управляемый аэродинамический спуск. Посадка выполняется по-самолетному, на взлетно-посадочную полосу обычного аэродрома. В качестве альтернативного варианта возможна посадка пассажирской капсулы на парашюте.
По словам главного конструктора проекта Валерия Новикова, такая схема позволит совершить своего рода революцию в астронавтике, поскольку приведет к появлению нового поколения космических носителей многоразового использования — куда более дешевых и надежных, чем нынешние.
«Клипер» уже на стапеле
А теперь давайте познакомимся еще с одной новинкой наших дней — многоразовым кораблем «Клипер», который будет действовать в составе новой системы доставки грузов на орбиту «Паром». Новый космический корабль уже обретает реальные очертания в просторном цехе ракетно-космической корпорации «Энергия».
«Уже наглядно видно, что представляет собой этот корабль, — сообщил журналистам заместитель генерального конструктора РКК „Энергия“, летчик-космонавт и дважды Герой Советского Союза Валерий Рюмин. — Он будет существенно отличаться и от российских „Союзов“, и от американских „шаттлов“. Коллектив разработчиков под руководством заместителя генерального конструктора Николая Брюханова, использовав опыт по созданию „Союзов“ и „Бурана“, собственные оригинальные решения, добился весьма неплохих результатов».
Основные характеристики российского многоразового корабля «Клипер» таковы: длина — 7 м, масса — 14 т, экипаж — 6 человек, объем кабины — 20 куб. м. С орбиты можно возвращать 500 кг полезного груза. В космос корабль будет выводиться или новой ракетой «Онега», или (если ее не успеют довести) уже апробированным «Зенитом».
«Клипер» будет иметь возможность совершать при спуске маневр и приземляться на парашютах в России (а не в Казахстане, как нынешние «Союзы»). Уникальную кабину планируется отправлять в космос много раз. При соответствующем финансировании первый испытательный полет может уже произойти через пять лет…
Валерий Рюмин особо отметил, что в передней носовой части «Клипера» установят (как и на «Союзе») двигатели системы аварийного спасения (САС). Таким образом, обеспечивается безопасность экипажа в случае возникновения любых ЧП и на старте, и на всех участках выведения корабля в космос. Шаттлы, к слову, не имеют такой системы, из-за ее отсутствия не удалось спастись семерым астронавтам при взрыве во время взлета многоразового «челнока» «Челленджер».
«Клипер», который полетит не ранее 2008–2010 годов, ведет свою родословную от первых маневрирующих возвращаемых аппаратов, проводившихся в начале 60-х годов XX века. Сперва он выглядел как цилиндр с носовым конусом и стабилизирующей конической «юбкой» на корме — эдакий «гвоздь». Потом аэродинамики подсказали лучший вариант: конус с наплывами, которые делали нижнюю часть плоской, повышая аэродинамическое качество и перераспределяя нагрев при входе в атмосферу.
В одном из вариантов, опубликованным в 1993 году, 3,5-тонный корабль должен был запускаться «Циклоном» или проектировавшимся тогда же в «Энергии» легким носителем «Квант». Обводами он уже почти полностью предвосхищал возвращаемый аппарат «Клипера», только размерами поменьше (длина — 2,9 м, диаметр — 1,3 м). Однако до его строительства дело так и не дошло — обошлись более дешевыми «Фотонами».
Нынешний «Клипер» состоит из двух отсеков — возвращаемого или спускаемого аппарата и агрегатного или орбитального отсека.
Возвращаемый аппарат массой 9,8 т представляет собою конус, составленный из трех частей. Причем одна из боковых сторон (нижняя при посадке) наплывами выровнена под этакую «лыжу». Самый нос затуплен для лучшего рассеивания кинетической энергии торможения в атмосфере. Вокруг носа видны узлы крепления двигателей системы аварийного спасения, срывающих корабль с ракеты в случае аварии.
В самом аппарате два отсека. Впереди — двигательный, в котором установлены ракетные двигатели системы ориентации и управления спуском и баки с топливом для них, за ним — отсек экипажа, в креслах которого разместятся шесть космонавтов. Причем только двое из них будут непосредственно заняты управлением «Клипером», — так что остальные четверо могут быть научными работниками или даже просто космическими туристами.
Люк в задней стенке возвращаемого аппарата связывает его с агрегатным отсеком массой около 4,5 т. В нем расположены двигатели орбитального маневрирования, топливо для них, система электропитания, а также оборудование, необходимое для работы на орбите, припасы и т. д.
В случае необходимости обитаемая часть агрегатного отсека будет использоваться и как шлюзовая камера для выхода в открытый космос. Таким образом, помимо транспортных рейсов к орбитальной станции «Клипер» сможет выполнять и самостоятельные полеты продолжительностью до 10 суток.
Изменилась и система спасения. Вместо мощной двигательной установки системы аварийного спасения, которую частенько сбрасывали, так и не использовав, на «Клипере» один большой ракетный двигатель твердого топлива, который ставили обычно на носу спасаемого корабля, заменили на 8 маленьких в корме. Эти же двигатели после штатного отделения от ракеты-носителя, включаясь попарно, смогут в четыре приема вывести корабль на опорную орбиту, не давя на экипаж и пассажиров огромными перегрузками.
Когда это будет? Все опять-таки зависит от финансирования. Пока работы над «Клипером» ведутся только корпорацией «Энергия» за собственные деньги. Между тем на проект еще нужно как минимум 10 млрд рублей, или 300 млн евро. А затем еще примерно столько же на строительство четырех «челноков» с ракетами-носителями и модернизацию стартовых площадок.
В общем, в итоге стоимость проекта приближается уже к 1 млрд долларов. А это весьма серьезные деньги, которых у корпорации «Энергия» нет. Поэтому создатели «Клипера» вовсе не против вступить в кооперацию, например со странами — участницами европейского космического агентства ESA Японией или кем-либо еще.
Так что в лучшем случае мы увидим этот уникальный аппарат в полете не ранее 2013–2015 годов. Именно такие сроки назвал на пресс-конференции глава Роскосмоса А. Н. Перминов.