«Жизнь началась в водной среде, – рассуждал исследователь. – И первые обитатели Земли дышали жабрами. Когда же они вышли на сушу, то сначала могли жить и здесь, и там, получая кислород как из воздуха, так и из воды. Со временем жабры постепенно трансформировались в легкие, однако природа ведь ничего не забывает. А коли так»…
И Килстра решил провести сенсационный эксперимент. Поскольку и в жабрах и в легких происходят одни и те же процессы – извлечение кислорода из окружающей среды и насыщение им крови – так нельзя ли вернуть легким утраченную способность извлекать живительный газ из жидкости?
На первый взгляд мысль бредовая: сколько уж утопленников пытались дышать водой? Печальный опыт человечества при кораблекрушениях и неосторожных купаниях, казалось бы, полностью опровергает такую возможность. Но Килстра оказался упорным. И в 1959 году продемонстрировал эксперимент, о котором взахлеб сообщали многие средства массовой информации.
На демонстрационном столе в банке с жидкостью сидела белая лабораторная мышь. И дышала. Причем не воздухом, а жидкостью. И час, и другой, и третий… И жабры ей никто не вживлял.
Правда, в банке была не обычная вода, а физиологический раствор солей, насыщенных кислородом. Притом под давлением в три атмосферы, чтобы создать достаточную концентрацию кислорода, поступающего из легочных альвеол в кровь.
Так было доказано – легкие могут дышать жидкостью. Ну а что дальше? Поэкспериментировав с мышами, Килстра взялся за собак. Их он помещал не в жидкость, а в барокамеру с повышенным давлением. А затем заставлял опять-таки дышать физиологическим раствором, насыщенным кислородом, через специальное приспособление.
Этот опыт показал очередные трудности перевода легких на дыхание жидкостью. Например, оказалось, что кислород распространяется по объему жидкости в 6000 раз медленнее, чем в воздухе. А значит, далеко не весь живительный газ поступает из легких в кровь. Соответственно и углекислота, скапливаясь, требует больших усилий для выведения из организма.
Но все эти трудности, как считал Килстра, со временем устранимы. Во всяком случае, он решился провести эксперимент на человеке. Стать первым в мире человеком-амфибией дал согласие 38-летний акванавт Френсис Фалейчик. Приглашенные в медицинский центр Дьюкского университета операторы зарегистрировали все стадии этого уникального эксперимента.
Испытуемому вставили через рот в трахею эластичную трубку и стали вливать специально приготовленный раствор. Таким образом легкие заливала жидкость, но акванавт был спокоен. Знаками он показал экспериментаторами, что поступление жидкости можно увеличить, а сам взялся за карандаш, чтобы описать свои ощущения.
Таким образом, человек дышал жидкостью около четырех часов. После окончания эксперимента Фалейчик заявил репортерам: «Я не чувствовал никакого неудобства и не ощущал лишнего веса в груди, как ожидал»…
В дальнейшем планировалось полное погружение человека в раствор. И если бы и этот опыт оказался удачным, то можно было бы ожидать ошеломляющие перспективы. Заполнив баллоны того же акваланга «дыхательным раствором», человек смог бы опускаться на тысячи метров в глубь океана и подниматься оттуда, не проходя длительной процедуры декомпрессии.
Ведь главная опасность, подстерегающая акванавтов сегодня, – так называемая кессонная болезнь. Она проявляется в том, что при погружении в кровь под большим давлением поступает излишнее количество азота, содержащееся в обычном воздухе. Когда же затем акванавт поднимается к поверхности, окружающее давление падает, и азот в крови начинает бурно выделяться. Он может повредить кровеносные сосуды, сердце и легкие, и тогда человека ждет мучительная смерть.
В дыхательном же растворе нет азота, а стало быть, и нечему выделяться. Кроме того, жидкость в легких будет противодействовать давлению жидкости снаружи, и человеку не грозит опасность быть раздавленным. Ведь иначе на большой глубине на каждый сантиметр его грудной клетки, представляющей собой, по существу, «бочку с воздухом», давят многие тонны окружающей воды…
Ныне во многих странах, включая Россию, метод жидкостного дыхания уже опробовали на мышах и собаках. И вот теперь, судя по первым публикациям, готовятся и первые эксперименты на человеке.
Действие будет происходить в реанимационном отделении, чтобы застраховаться от «нештатного» развития ситуации. В качестве «воды» в этом опыте используют опять-таки специальный физиологический раствор. Он вдвое плотнее воды и не будет всасываться легочной тканью, а значит, испытуемому не грозит отек. Кроме того, жидкость насыщена кислородом и обладает способностью легко его «отдавать».
Причем нашелся человек – в печати называют его Александром – у которого в результате операции удалена гортань. Вдобавок он – тренированный человек, опытный ныряльщик. В общем, перед нами тот редчайший случай, как считает сам кандидат в испытатели, когда увечье дает человеку уникальные преимущества перед другими. Ему не придется разрезать трахею, как Фалейчику. Защитные реакции, заставляющие любого из нас кашлять, как только в дыхательное горло попадет малейшая крошка, а не то, что трубка, у него отключены.
Если первый опыт окажется удачным, эксперименты продолжат в одном из оборонных НИИ. Добровольца поместят в барокамеру, где будут варьировать давление, имитируя разную глубину погружения. Постепенно условия экспериментов приблизят к натурным.
Тогда профессиональные возможности водолазов-спасателей резко расширяются. Представим на минуту, что в пучину спускается водолаз в легком снаряжении и вместо обычного акваланга у него баллоны с жидкостью, насыщенной кислородом. Тогда он сможет быстро погрузиться и на 200 метров, и на 300, не опасаясь, что окружающее давление его раздавит.
«Жидкостное» дыхание станет избавлением и для многих жертв морской катастрофы, оказавшихся на краю гибели в затонувшем судне. Им водолазы смогут спустить снаряжение на такой же основе, помочь облачиться в него и подняться на поверхность, не теряя драгоценных секунд.
Но все-таки наш дом – земля, но не вода. Даже сказочный Садко и тот тосковал по суше…
Секреты искусственной крови
История ее создания – драматична и даже трагична. Но прежде чем ее рассказывать, давайте подумаем: «А зачем вообще нужна искусственная кровь?»
Вспомним, еще со времен Гиппократа врачи пытались лечить больных не только пусканием крови, но и переливанием ее. Или, говоря иначе, с помощью трансфузиологии. Но зачастую от этого было больше вреда, чем пользы. Ведь медики поначалу не знали, что кровь у людей бывает четырех различных групп, а если учесть еще и положительный или отрицательный резус-фактор, то восьми.
А когда разобрались что к чему, выяснилось: делать крупные запасы обычной донорской крови дорого и неудобно. Во-первых, в нужный момент, как правило, доноров не хватает. Во-вторых, кровь надо хранить в холодильниках, что не всегда возможно, например, в полевых условиях. В-третьих, известно не так уж мало случаев, когда с донорской кровью в организм пациента попадают возбудители таких страшных болезней, как СПИД и гепатит С…
Словом, нужен такой кровезаменитель, который не требует жестких условий транспортировки, способен долгое время храниться при комнатной температуре, а переливание можно осуществить прямо на месте происшествия, до прибытия пациента в стационар.
Переливание крови спасло жизни многих людей
Наверное, именно поэтому в 2008 году американские ученые раззвонили о создании такой жидкости на весь мир, заявив, что это событие можно приравнять к первому полету на Луну. Возможно, они не знали (а скорее всего, не захотели знать), что первенство в изобретении «синтетической крови» – перфторана – принадлежит российским ученым из подмосковного Пущино, которые разработали его около 30 лет назад.
Долгожитель науки, профессор кафедры биофизики физфака МГУ им. М.В. Ломоносова Симон Эльевич Шноль хорошо помнит те события.
Еще в самом начале 60-х годов ХХ века появились сенсационные сообщения об идее американца Генри Словитера, предлагавшего создать насыщенные кислородом воздуха эмульсии перфторуглеродов в качестве дыхательной среды и возможных кровезаменителей. Более того, в 1966 году Лиленд Кларк поместила мышь, словно рыбу, в аквариум, наполненный перфторэмульсией.
Перфторуглероды – это цепочки углеродных атомов, у которых все свободные валентности замещены атомами фтора. Химическая связь углерод – фтор чрезвычайно прочна, поэтому фторуглероды не вступают ни в какие химические реакции. Их молекулы гидрофобны – жироподобны – и в воде нерастворимы. Однако они могут образовывать эмульсии – мельчайшие капельки, взвешенные в воде.
Причем в густой тяжелой белой жидкости концентрация кислорода была столь большой, что погруженные в нее мыши могли некоторое время «дышать» ею вместо воздуха. Жидкость заполняла легкие, и содержавшегося в ней кислорода оказывалось достаточно, чтобы поддерживать их жизнь. Однако мыши довольно скоро погибали. Происходило это не из-за недостатка кислорода, а от переутомления мышц грудной клетки, которым было слишком тяжело качать густую жидкость вместо воздуха.
Тогда эксперименты пошли в несколько ином русле. В 1968 году Роберт Гейер осуществил стопроцентное замещение крови крысы на перфторэмульсию. Крыса осталась жива.
В 1969 году разработкой перфторэмульсионных заменителей крови занялись американские и японские исследователи. Однако после первых сообщений о возможностях перфторуглеродных эмульсий вдруг наступило затишье. Это могло быть по двум причинам. Либо экстравагантные работы Словитера и его последователей оказались своего рода мыльным пузырем. Либо, напротив, работы оказались столь перспективны, что их перевели в ранг секретных.
«В конце 70-х годов ХХ века по специальным каналам правительство СССР получило сообщение о проводимых в США и Японии работах по созданию кровезаменителей на основе перфто