Наличие хорошего недорогого канала связи – обстоятельство, которое сегодня способно творить в телемедицине чудеса. Особенно в России, где у медиков всегда было мало денег. И спутниковая связь здесь вовсе не обязательна. Сеть телеканалов, которые можно было бы приспособить для целей телемедицины, в нашей стране уже существует. Например, недавно Министерство путей сообщения проложило оптоволоконные линии вдоль многих железнодорожных путей. Железнодорожники, правда, делали это для своих целей, но заодно подключили к этой сети и железнодорожные поликлиники. Благодаря этому единственный крупный телемедицинский центр в России, имеющий качественную оптоволоконную связь с многими отдаленными городами и поселками нашей страны, работает при Центральной клинической больнице МПС.
Еще одним шансом для развития телемедицины может послужить и та телесеть, которая с большой помпой и скоростью была смонтирована по всей стране для передачи информации с избирательных пунктов перед последними президентскими выборами. Теперь большей частью эти каналы бездействуют. И нужно не так уж много денег, чтобы перенести телекамеры и мониторы из помещений бывших избирательных участков в медицинские кабинеты.
А еще нужен закон о телемедицине, чтобы врачам-энтузиастам не приходилось заниматься этим делом как бы на общественных началах.
Человек… стеклянный?
Кто из нас в шутку или всерьез не говаривал: «Отодвинься, не стеклянный, сквозь тебя ничего не видно…» Оспаривать ходячее выражение, наверное, труд бесполезный. А вот факт, в нем содержащийся, стоит подвергнуть сомнению. Дело в том, что стараниями ученых Института радиотехники и электроники недавно удалось доказать, что человеческое тело прозрачно не только для рентгена или ультразвука, но и отчасти для обычных световых лучей.
– Посмотрите на свою руку, расположив ладонь против лампочки, – предложил мне сотрудник отдела биомедицинских исследований Юрий Поляков. – Видите, сквозь кожу просвечивают детали строения кисти? Картину можно еще более конкретизировать, если воспользоваться аппаратурой, разработанной в нашем институте…
Медикам бывает немаловажно знать не только подробности строения внутренних органов – на это сгодится и рентген, но и другие детали, ему недоступные. Взять хотя бы кровеносную систему. Кроме крупных, магистральных сосудов, в ней огромное количество очень тонких, капиллярных, идущих чуть ли не к каждой клеточке организма. Как узнать, нормально ли они функционируют? До сих пор это можно было сделать лишь опосредованно.
Вот если бы просветить подкожные слои, где расположены многие капилляры, задумались ученые. И вспомнили, что наше тело большей частью состоит из воды. В костях содержится до 30–40 процентов жидкости, а в мягких тканях и того больше – до 90 процентов. А ведь в прозрачной воде можно различать предметы на расстоянии в несколько метров.
Правда, жидкость, которая содержится в нашем организме, вряд ли может быть названа прозрачной, В ней растворено немало биологических примесей. Да и содержится она не единой массой в неком сосуде, а рассредоточена во множестве ячеек-клеток, разделенных мембранами и оболочками…
Современные лазерные технологии создают новые возможности для исследований в области медицины
Но ведь и в мутной воде сегодня научились видеть. Для связи с подлодками в технике используют лазеры сине-зеленого спектра. Мощные источники излучения обладают большой «пробойной» силой. Кроме того, лучи этого цвета меньше поглощаются и молекулами морской воды, и взвешенными в ней частицами. Быть может, нечто подобное годится и для проникновения в биологическую жидкость?
В результате экспериментов ученым удалось обнаружить «окна прозрачности» нашей кожи. Например, лазерные лучи с длиной волны 0,7–1,3 мкм проходят сквозь нее, почти не задерживаясь. Ну а дальнейшее, как говорится, было делом техники: опираясь на обнаруженный эффект, ученые создали прибор, который мне и продемонстрировали. Лазерное излучение в нем подается по световоду в небольшую коробочку, которую прикладывают к телу пациента.
Лазерный луч, пройдя сквозь кожу, сообщит нам лишь толику тепла. Отразившись же от внутренних тканей, он пойдет обратно, неся с собой информацию об их состоянии. Конечно, невооруженным глазом мы мало что увидим. Мощность вернувшегося излучения чрезвычайно мала – счет порою идет на отдельные фотоны, – и отражаться лучи будут от слоев, лежащих на разной глубине, что приведет к известной мешанине.
В радиолокации подобную смесь сигналов иногда называют «молоком», поскольку экран радара действительно словно кто молоком залил, ничего не видно. Чтобы выделить полезный сигнал из помех, ведут зондирование короткими импульсами, используют разные диапазоны излучения, применяют временную селекцию целей – то есть разделяют сигналы по времени.
Весь этот арсенал инженерных приемов использован теперь и в медицине. Лазерное зондирование подкожных слоев ведется очень короткими импульсами, продолжительностью не более миллисекунды. При этом посылаемый сигнал не успевает слиться со своим отражением. Для большей достоверности зондирование ведется не в одном, а в шести диапазонах. Применяется и временное разделение: излучение с малой глубины принимается меньшим глазком-антенной, а для глубинного зондирования используют более чувствительную антенну – глазок побольше.
Ну а чтобы окончательно стало ясно, «что есть что», к анализу полученной информации подключается компьютер. Он по специальной программе обрабатывает принятые сигналы, рисует на экране дисплея разные кривые. А по ним можно оперативно и с большой точностью определить, насколько тренирован тот или иной человек, годится ли он, скажем, для выполнения трудной работы водолаза…
«Умные» пилюли
Впервые об этой чудодейственной таблетке я узнал где-то в конце 70-х годов прошлого века от соседа, работавшего в КГБ. Он проходил ежегодное профилактическое обследование в своей ведомственной поликлинике и рассказал: «Мне дали проглотить электронную таблетку, и она сама сделала все необходимое».
А вскоре о такой таблетке заговорили и в открытую. Чудо-пилюлю прозвали «кремлевской таблеткой», поскольку ею, дескать, пользовались все правительственные долгожители. На самом деле она представляет собой металлическую капсулу длиной 22 мм и диаметром 11 мм с пластмассовой перемычкой в центре.
Она не только снимает показания, но и является стимулятором некоторых процессов в организме. Основным постулатом, от которого отталкивались изобретатели этого приборчика – пульсация, которая постоянно происходит в человеческом организме. Слабые энергетические импульсы «кремлевской таблетки» активизируют и синхронизируют работу внутренних органов.
По утверждениям некоторых врачей, «кремлевская таблетка» способствует восстановлению ритма сердца, она помогает избавиться от шлаковых завалов в кишечнике, стимулирует деятельность предстательной железы, работу печени, почек, излечивает головную и зубную боль, ликвидирует похмельный синдром, улучшает зрение, лечит бесплодие у женщин…
Впечатляет, не правда ли? Однако есть и другие мнения насчет АЭС ЖКТ (автономного электростимулятора желудочно-кишечного тракта) – так официально называется эта капсула. Академик Е.И. Чазов, многие годы занимавшийся лечением членов Политбюро и ЦК КПСС, в одном из интервью обмолвился, что его пациенты не только не принимали эту таблетку, но и он сам о ней ничего толком не знает. Независимые исследования показали, что «кремлевская таблетка», производя неконтролируемую стимуляцию желудочно-кишечного тракта, одновременно ослабляет сердечную и легочную деятельность, нарушает работу почек и селезенки. Так что, пожалуйста, поаккуратнее с этим разрекламированным «мини-чудом», купить которое ныне может каждый.
Фирма Philips Research разработала электронную пилюлю, управляемую ультразвуком
Тем не менее процесс, как говорится, пошел. И в 80-е годы в NASA разработали аналогичную «таблетку-термометр» для мониторинга температуры космонавтов. Позднее такие таблетки начали глотать спортсмены-чемпионы: таблетка оперативно выдавала жизненно важные данные о внутренней температуре тела.
В 2012 году в США и Великобритании начали продавать еще один микрочип, который можно проглотить. Он не только измеряет температуру тела, но и предоставляет информацию о том, когда и какое лекарство принимал пациент накануне. Следующий шаг – создание идеальной пилюли, которая начинала бы действовать в организме пациента не сразу, а в тот момент, когда лекарство достигнет больного органа или когда наступит определенный врачом срок: через день, неделю, месяц или даже год…
Именно над осуществлением этой мечты вот уже два десятка лет работает наш соотечественник, руководитель группы биополимеров факультета материаловедения колледжа Лондонского университета Глеб Борисович Сухоруков. Начал он свои исследования еще во время подготовки диплома на физфаке МГУ.
«Я пришел к химикам с идеей делать тончайшие полимерные пленки, похожие на слоеное тесто, – вспоминает Сухоруков. – Сейчас мы знаем, что свойства таких пленок программируются: если пленка толще, то ее проницаемость будет меньше, и наоборот. А добавив в нее природные вещества – белки, ферменты, можно создать крошечный прибор самого разного применения»…
Однако, как известно, скоро только сказки сказываются. Химики тогда объяснили молодому человеку, что слоеные тончайшие полимерные пленки построить нельзя. И теоретически они до сих пор правы. В равновесной системе таких пленок быть действительно не должно. «Но на практике мы всегда оперируем неравновесными, метастабильными системами, – подчеркивает Сухоруков. – А потому на практике все получилось, согласно известной поговорке: “Если нельзя, но очень хочется, то можно”…»
Лет пятнадцать тому назад все тому же Сухорукову пришла в голову идея создавать на основе таких пленок медикаментозные капсулы. «Мы с коллегами уже умели делать эти пленки на плоской поверхности, но пока не думали об их прикладном применении,