100 великих загадок истории флота — страница 21 из 56

2.


Современный водолазный костюм СВВ-9


А фирменные гидрокомбинезоны марки «Нордик ПРО СВВ» производят из высокопрочного триламината – синтетического материала, с обеих сторон продублированного нейлоном. Такой костюм примерно вдвое легче резинового.

Наиболее ответственные части костюма усилены налокотниками, наколенниками и прочими накладками из резины либо кевлара. В нижнюю часть гидрокомбинезона вклеивают резиновые же боты с подошвами толщиной 8 мм, а внутри для термоизоляции ставят прокладку из неопрена.

В отличие от классической «рубахи», влезать в которую приходилось через ворот, который растягивали два помощника водолаза, в нынешнем комбинезоне имеются водонепроницаемые застежки-молнии, облегчающие и ускоряющие его надевание.

Перчатки могут быть «мокрыми», водонепроницаемыми, из неопрена либо «сухими», изготовленными из латекса или резины.

Особо отметим, что все материалы водолазного костюма стойки к воздействию не только воды, но и нефти, бензина и технических масел.

При обрыве или зажиме воздухопроводного шланга водолаз может отсоединить его и всплывать, пользуясь запасом воздуха, заключенным в двух баллонах, объемом по 2 л. Они наполнены воздухом под давлением 200 кг/см2, который при необходимости начинает поступать в шлем через поршневой редуктор ВР-15. Воздуха вполне достаточно, чтобы можно было подняться на поверхность с глубины в 60 м, делая остановки, чтобы избежать кессонной болезни.


На практике приходится вести работы и на больших глубинах. Тут уж сжатый воздух для дыхания и резиновый костюм не годятся.

Глубоководные скафандры делают из прочной стали, позволяющей выдерживать давление и на глубине порядка 300 м, а дышат водолазы уже особыми смесями на основе не азота, а гелия.

Наши специалисты В. Иванов, И. Выскребенцев, С. Кийко еще в 1946 году смогли погрузиться в пучину на 200 м, а затем водолазы Д. Лимбес, В. Шалаев, А. Ковалевский и другие побывали на 300-метровой глубине за десять лет до швейцарца Г. Келлера.

Цель, которую преследовали отважные первопроходцы, – добиться длительного пребывания на глубине и быстрого возвращения на поверхность. Однако еще в XVIII веке французский ученый П. Бэр отметил, что «давление воды действует на живой организм… как химический агент». В чем тут дело?

В обычных условиях все мы дышим воздухом, в котором парциальное давление кислорода составляет 0,21 атм. Если же оно будет ниже 0,16 атм, возникает кислородное голодание, сопровождающееся внезапной потерей сознания, а в том случае, когда оно превышает 0,6 атм, наступают кислородное отравление, а за ним и летальный исход.

Отсюда нетрудно прийти к выводу – чем глубже опускается подводник, тем меньше ему нужно кислорода, место которого в дыхательной смеси должны занять другие газы – разбавители. В атмосферном воздухе им служит азот. Однако при повышенном давлении и с ним происходят неприятные метаморфозы и у ныряльщика или водолаза возникает так называемый азотный наркоз. Дурманящее действие азота проявляется на глубине уже 40 м, а на 80–90 м оно становится опасным – у водолаза возникает ненормальное возбуждение, начинаются галлюцинации.

Поэтому на глубине азот заменяют гелием. Еще в 1937 году американский инженер М. Нол успешно погрузился, дыша гелиевой смесью, на глубину порядка 100 м. Позднее выяснилось, что употребление гелия не вызывает глубинного опьянения и на 300 м. А дальше появляется новый враг. Это НСВД – нервный синдром высоких давлений. Тут именно гелий и показывает себя «во всей красе». Сначала у подводного пловца начинаются нарушения моторики (дрожь), затем он теряет ясность мышления, приходит в возбуждение, заканчивающееся припадками эпилептического характера.

Поэтому в некоторых странах попробовали заменить и гелий. В 1968 году несколько обезьян опустили на глубину 600 м, подавая им гелиево-водородно-кислородную смесь, и животные перенесли этот эксперимент довольно сносно. Однако и по сей день водолазы работают на глубинах 600–700 м лишь в случаях крайней необходимости.

Батискафы, батисферы, гидростаты…

Для исследования больших глубин исследователи стали использовать батисферы – прочные оболочки сферической формы с герметично закрывающимся люком и прочным иллюминатором для наблюдения. Такую сферу подвешивают на тросе и спускают в воду с судна обеспечения.

Проект такого аппарата американцы К. Ричардсон и Дж. Уолкотт представили еще в 1848 году. Но осуществить свой проект они не смогли. И их опередил У. Базен, который в 1865 году сумел опуститься в сфере собственной конструкции на глубину 75 м.

В начале ХХ века исследованиями глубин весьма заинтересовался биолог У. Биб. Он ознакомился с проектом батисферы капитана Дж. Батлера и сумел добиться, чтобы она была построена. Сфера диаметром около 1,5 м была целиком отлита из стали и весила 2,5 т. Толщина стенок составляла чуть больше 3 см. Аппарат имел узкий, 35-сантиметровый люк, небольшие иллюминаторы из кварцевого стекла диаметром 152 мм и рули для поворота вокруг оси.

Атмосфера внутри батисферы очищалась при помощи вентилятора, который прогонял воздух через кассеты с порошком хлорида кальция для удаления углекислого газа. А дозированные порции кислорода поступали из двух баллонов, емкостью по 600 л.


Уильям Биб и Отис Бартон рядом с батисферой


На глубину батисфера опускалась с борта баржи «Реди» на стальном тросе диаметром 22 мм, намотанном на барабан лебедки. Кроме троса, баржу с батисферой связывали два телефонных кабеля, по которым с гидронавтами поддерживалась постоянная связь, и два электрических провода. Внутри батисферы рядом с иллюминатором был установлен мощный светильник в 1,5 кВт, что оказалось весьма неудачным решением, поскольку лампа очень сильно нагревалась, свет ее бил в глаза, мешая наблюдению через соседний иллюминатор. Да и вообще комфорт оставлял желать лучшего – исследователям приходилось все время сидеть на корточках или поджав ноги под себя.

Тем не менее, начиная с лета 1930 года, Биб и Бартон провели серию спусков под воду у острова Нонсач, неподалеку от Бермудских островов. Исследователям удалось спуститься до глубины 800 м, поставив мировой рекорд.

Однако, когда после первой серии погружений батисферу опустили на глубину 915 м, при подъеме она оказалась полностью заполненной водой. Не выдержало уплотнение иллюминатора, но, на счастье, этот испытательный спуск проходил без участия людей.

Пришлось провести модернизацию. И 11 августа 1934 года Уильям Биб и Отис Бартон опустились на глубину, рекордную для того времени, – 923,5 м.

Далее, в 1949 году у берегов Калифорнии Отис Бартон уже без Биба опустился на глубину 1006 м, а 16 августа 1949 года – на 1375 м, пробыв под водой 2 часа 19 минут.

В СССР начали заниматься глубоководными спусками во второй половине 30-х годов ХХ века. В 1936 году инженеры Михайлов, Нелидов и Кюнстлер создали проект одноместной батисферы, предназначенной для исследований на глубинах до 600 м. Корпус батисферы состоял из двух стальных полусфер с фланцами. Внутренний диаметр собранной сферы был равен 1,75 м. В сфере имелись отверстие под входной люк и несколько отверстий под иллюминаторы.


Наряду с батисферами для подводных погружений использовались и гидростаты, имевшие форму цилиндра со сферическими днищами. Такой корпус позволял с большими удобствами разместить экипаж и аппаратуру.

Первым гидростатом, опустившимся на глубину свыше 400 м, была конструкция американского инженера Ганса Гартмана. Погружение происходило в 1911 году в Средиземном море. С гидростата, опущенного на глубину 458 м, Гартман сделал несколько фотоснимков. А после всплытия рассказал об испытанном им ужасе, поскольку под воздействием глубинного давления внутри камеры стал раздаваться треск «наподобие пистолетных выстрелов».

Тем не менее работы по совершенствованию гидростатов продолжались. Были даже попытки создать нечто вроде «подводного танка», способного ползать по дну. Именно такую конструкцию имел, например, гидростат Рида с экипажем из двух человек.

В России работы по проектированию и строительству гидростатов начались в 20-х годах ХХ века по заказу ЭПРОНа – Экспедиции подводных работ особого назначения. Дело в том, что флотскому инженеру В. С. Языкову удалось собрать сведения о гибели в районе Балаклавской бухты в 1854 году парусно-винтового фрегата «Черный принц» с золотыми монетами на борту. Для подъема столь ценного груза инженер Е. Г. Даниленко построил гидростат с глубиной погружения 150 м. Воздух для экипажа подавался с катера по резиновому шлангу.

Однако золотой груз экспедиции заполучить так и не удалось. Правда, погружения в Балаклавской бухте не шли даром. Экспедиция подводных работ получила богатый опыт, который позволил ее членам в дальнейшем поднять 110 затонувших судов.

А сам гидростат Даниленко затем успешно использовался на Белом и Балтийском морях. С его помощью, в частности, была обнаружена канонерская лодка «Русалка», затонувшая в 1893 году в Финском заливе.


В 1944 году по проекту инженера А. З. Каплановского был построен гидростат ГКС-6, предназначенный для аварийно-спасательных работ. Корпус гидростата выполнен из стальных цилиндров и рассчитан для погружений на глубины до 400 м. Вес гидростата вместе с грузом составил одну тонну. При отдаче груза, прикрепленного к днищу, аппарат приобретал небольшую положительную плавучесть и самостоятельно всплывал.

В 1960 году на Балтийском заводе построили гидростат «Север-1» из прочной легированной стали. Расчеты показали, что гидростат может погружаться на глубину до 750 м. В конической части корпуса имелось пять иллюминаторов из органического стекла. Над входным люком на поворотной головке закреплены прожектор и фотовспышка, срабатывающая одновременно с открытием затвора фотокамеры. Кинокамера была установлена на кольцевой направляющей внутри гидростата. В нижней части гидростата закреплена чугунная балластная плита, которая сбрасывалась в аварийной ситуации.