А ну-ка, догадайся! — страница 29 из 32

Будет ли лампа по истечении 2 мин включена или выключена?



Каждое нечетное нажатие кнопки включает лампу, каждое четное — выключает ее. Если по истечении 2 мин лампа включена, то это означает, что последнее число нечетное. Если же по истечении 2 мин лампа выключена, то последнее число четное. Но последнего натурального числа не существует.

Лампа должна быть либо включена, либо выключена, но узнать, будет ли она включена или выключена, невозможно никаким способом!


Парадоксы с «сверхзадачами», выполняемыми так называемыми «машинами бесконечности», и поныне волнуют специалистов по математической логике и философов. Парадокс с лампой известен под названием «лампа Томсона» — в честь впервые написавшего о нем Джеймса Ф. Томсона. Всякий согласится, что лампу Томсона нельзя построить реально, но дело не в этом. Главное в том, что если принять некоторые допущения, то лампа Томсона не приводит к логическим противоречиям. По мнению одних, лампа Томсона — вполне разумный «мысленный эксперимент», по мнению других, — вопиющая нелепость.

Парадокс с лампой Томсона беспокоит наш разум потому, что не существует логической причины, по которой лампу Томсона нельзя было бы бесконечно много раз включить и выключить. Если бегун Зенона успевает за 2 мин преодолеть бесконечно много отрезков дистанции, каждый из которых вдвое меньше предыдущего, то почему ровно за 2 мин нельзя успеть бесконечно много раз включить и выключить некую реально не существующую идеальную лампу? Но если лампа Томсона может за 2 мин бесконечно много раз перейти из состояния «вкл» в состояние «выкл», то это означает, что существует «последнее» натуральное число, с чем трудно согласиться.

Философ Макс Блэк сформулировал тот же парадокс несколько иначе. Он рассмотрел «машину бесконечности», переводящую шарик из лунки А в лунку В за 1 мин, затем возвращающую шарик из лунки В в лунку А за 1/2 мин, снова переводящую его из лунки А в лунку В за 1/4 мин и т. д., каждый раз вдвое быстрее, чем в предыдущий. Ряд 1 + 1/2 + 1/4… сходится, и все операции по перекатыванию шарика завершаются в течение 2 мин. Но в какой из лунок — в А или В — окажется шарик по истечении 2 мин?

В какой бы из них он ни оказался, это будет означать что последнее натуральное число либо четно, либо нечетно. Так как последнего счетного числа не существует, то обе возможности, по-видимому, исключаются.

Но если шарика нет ни в лунке А, ни в лунке В, то где же он?

Основные статьи по анализу «сверхзадач» опубликованы в сборнике «Парадоксы Зенона» под редакцией Весли Ч. Солмона. Подробному разбору такого рода парадоксов посвящена книга Адольфа Грюнбаума «Современная наука и парадоксы Зенона» [см. список литературы. — Перев.].


Мэри, Том и Фидо


Перед вами сверхзадача, выполненная собакой. В самом начале Фидо находится рядом с хозяином на расстоянии 1 км от Мэри.



Том и Мэри начинают сближаться со скоростью 2 км/ч каждый. Фидо, одинаково любящий хозяина к хозяйку, бегает от одного к другому и обратно со скоростью 8 км/ч. Добежав до хозяина и хозяйки, Фидо мгновенно поворачивается и пускается назад.



Путь Фидо представлен на графике в координатах время — расстояние. Куда будет обращена морда Фидо — к хозяину или к хозяйке, когда Том и Мэри встретятся посредине разделявшего их километрового отрезка?



На этот вопрос, так же как на вопрос о том, будет ли включена или выключена по истечении бесконечной серии манипуляций с выключателем лампа Томсона, невозможно ответить. Но помочь Тому вычислить, какое расстояние пробежала собака, в наших силах…

Том. Сколько пробежал Фидо?

Но чтобы ответить на этот вопрос, мне нужно просуммировать длину бесконечно многих звеньев ломаной! Это очень трудная задача, Мэри!



Мэри. Совсем не трудная, милый! Мы идем со скоростью 2 км/ч. Значит, каждый из нас проходит полкилометра за 15 мин. Так как сначала нас разделяло расстояние 1 км, мы встречаемся через 15 мин.



Мэри. Фидо бегает со скоростью 8 км/ч. За четверть часа он пробегает 2 км. Вот и все.

Том. Здорово! Мне даже не понадобился микрокалькулятор.



Предположим теперь, что Том, Мэри и Фидо находятся там, где они встретились. Том и Мэри идут той же дорогой с той же скоростью, но в обратном направлении, а Фидо бегает от одного из них к другому со скоростью 8 км/ч. Где будет Фидо, когда расстояние между Томом и Мэри снова станет равным 1 км?



Невероятно, но факт: Фидо не может находиться нигде между Томом и Мэри! Не верите? Убедитесь сами. Пусть вначале Фидо находится в любой точке километрового отрезка, разделяющего Тома и Мэри, которые начинают идти навстречу друг другу. Где бы ни находился Фидо, через 15 мин все трое сойдутся в центре отрезка.


Первая задача (Том и Мэри идут навстречу друг другу, а Фидо бегает между ними туда и обратно) классическая. Она существует в различных вариантах.

Иногда это задача о мухе, летающей туда и обратно между двумя сближающимися локомотивами, иногда— задача о птичке, порхающей между двумя едущими во встречных направлениях велосипедистами.

Рассказывают, что когда эту задачу предложили американскому математику Джону фон Нейману, тот сразу назвал правильный ответ. «Поздравляю! — сказал собеседник фон Неймана, сообщивший ему задачу. — Большинство людей пытаются решить задачу очень трудным способом, суммируя бесконечный ряд отрезков». «Но именно это я и сделал», — с удивлением ответил фон Нейман.

Итак, в какую сторону будет обращена морда Фидо в тот момент, когда Том и Мэри сойдутся посредине разделявшего их километрового отрезка? Задать такой вопрос все равно что спросить, будет ли включена или выключена лампа Томсона по окончании всех манипуляций с выключателем, или в какой из двух лунок, А или В, окажется в конце концов шарик. Это только кажется, будто Фидо должен быть обращен мордой либо к хозояину, либо к хозяйке. В действительности же любой ответ подразумевает, что существует последнее натуральное число (звеньев ломаной, по которой бежит собака), которое либо четно, либо нечетно.

Но если мы обратим процесс сближения Тома, Мэри и Фидо во времени, заставив Мэри и Тома расходиться из середины километрового отрезка, а Фидо по-прежнему бегать между хозяином и хозяйкой, то возникнет новый парадокс. Наша интуиция подсказывает нам, что если некую однозначно определенную процедуру обратить во времени, то есть изменить направление всех движений на противоположное, то мы должны вернуться к тому, с чего начали. Однако в рассматриваемом случае процедура при обращении времени утрачивает однозначную определенность. Если события развиваются от начала к концу, то Фидо оказывается в середине километрового отрезка, разделявшего Тома и Мэри. Но если события развиваются от конца к началу, то место, где будет находиться Фидо, когда Том и Мэри разойдутся на 1 км, невозможно указать однозначно: пес может находиться в любой точке отрезка.

Более подробный анализ этого парадокса проведен Весли Солмоном (Scientific American, декабрь 1971).

И задача о двух хозяевах и их верной собаке, и парадоксы Зенона, и лампа Томсона могут служить описательным введением в теорию пределов и суммирования бесконечной геометрической прогрессии.

Ломаная, по которой бежит Фидо, похожа на траекторию прыгающего мячика Вот несложная задача о таком мячике. Предположим, что круглый мяч брошен на пол с высоты 1 м. Высота, на которую подпрыгивает мяч, каждый раз вдвое меньше предыдущей.

Если каждый подскок длился бы 1 с, то мяч прыгал бы вечно. Но как и в парадоксах с бегуном Зенона, машиной, перемещающей шарик из лунки в лунку, и Фидо, на прохождение каждого следующего отрезка траектории требуется меньше времени, чем на прохождение предыдущего. Очередной подскок занимает 1/2 от продолжительности предыдущего подскока. Последовательность времен сходится. Следовательно, по истечении конечного промежутка времени мяч остановится, хотя теоретически он подпрыгнет бесконечно много раз. Суммарная высота всех подскоков составит 1 + 1/2 + 1/3 +… + 1/n = 2 м.

Предположим, что мяч подпрыгивает каждый раз на высоту, составлявшую 1/3 от предыдущей. Какова суммарная высота всех подскоков в этом случае?


Может ли время идти вспять?


При обращении некоторых движений, например если кто-нибудь вздумает пятиться или автомашина поедет задним ходом, создается почти полное впечатление, будто время течет вспять.



Знакомый мотив



звучит так странно, если пластинку проигрывать oт конца к началу.



Многие явления необратимы.



Время подобно стреле, указывающей только в одну сторону. Даже если знакомый мотив проигрывать от конца к началу, последовательность, в которой звучат ноты, располагается во времени, текущем вперед, а не назад.



Мы не можем заглянуть в будущее, но заглянуть в прошлое в наших силах. Взглянув на звезду, расположенную от нас на расстоянии в тысячу световых лет, мы увидим ее такой, какой она была тысячу лет назад.



Но видеть прошлое еще не означает перенестись в прошлое. Удастся ли когда-нибудь построить машину времени, которая позволит побывать в прошлом и в будущем?


Какие события допускают «обращение во времени», то есть изменение направления движения на противоположное, и какие не допускают? Чтобы наглядно представить себе различие между теми и другими, предположим, что мы отсняли некие события кинокамерой и просматриваем ленту на экране, прокручивая ее в обратную сторону. Какие события из числа происходящих на экране противоречат законам природы и какие согласуются с ними?