ол» в его более корректном химическом названии — холестерол{34}. Этот суффикс используется для указания на то, что молекула является спиртом, как, например, этанол (см. рис. 15.1). Строение холестерина показано на рис. 16.7. Вверху изображена схема холестерина, посередине — его шаростержневая модель, а внизу — объёмная модель. Спиртовая OH-группа находится на диаграмме слева, а на шаростержневой и объёмной моделях — слева внизу. Молекула содержит четыре углеродных кольца, пронумерованных от 1 до 4. На рисунке во всех узлах находятся атомы углерода, и каждый из них имеет четыре связи. Атомы водорода не показаны, за исключением тех мест, где необходимо отметить, расположен атом водорода перед плоскостью страницы или за ней. Если на конце треугольника нет символа H, значит, там находится метильная группа −CH3.
Рис. 16.7.Холестерин. Вверху: схема молекулы холестерина. Посередине: шаростержневая модель. Внизу: объёмная модель. Холестерин — это спирт (с OH-группой), состоящий из четырёх углеродных колец, пронумерованных от 1 до 4, и углеродной цепочки
Схема в верхней части рисунка позволяет увидеть, как атомы соединены друг с другом. Шаростержневая модель даёт более подробную трёхмерную иллюстрацию строения молекулы. Объёмная модель реалистичнее представляет картину трёхмерного строения молекулы. Она охватывает области пространства, где концентрируется большая часть распределения вероятности для электронов. Важно помнить, что молекулы — это не стержни и шары, а делокализованные электронные облака, окружающие положительно заряженные ядра, которые находятся в центрах атомов.
Если сравнить строение холестерина на рис. 16.7 с любыми моделями жирных кислот, представленными выше, становится очевидно, что холестерин совсем на них не похож. Например, объёмная модель стеариновой кислоты (см. рис. 16.1) сильно отличается от объёмной модели холестерина на рис. 16.7. Ясно, что на молекулярном уровне холестерин имеет мало общего с жирными кислотами. Тем не менее он часто обсуждается в связи с жирами, содержащимися в пище, а сама молекула холестерина приобрела крайне негативную «ауру».
Вопреки общему мнению, холестерин полезен
Да, холестерин пользуется дурной славой. Тем не менее это чрезвычайно важная биологическая молекула. Клетки окружены мембранами. Внутри клетки располагаются все те сложные молекулярные машины, которые необходимы для осуществления химических процессов, ответственных за жизнедеятельность. Вне клетки находится множество других химических соединений, включая кислород, соли и крупные биологические молекулы. Клеточная мембрана отделяет внутреннюю часть клетки от внешнего пространства, позволяя некоторым молекулам проходить внутрь и наружу, тогда как другие всегда остаются снаружи или внутри. Важнейшим компонентом клеточной мембраны являются фосфолипиды. Фосфолипиды состоят из двух углеводородных цепочек длиной обычно по 16 атомов углерода, присоединённых одним концом к головной группе, которая несёт положительный и отрицательные заряды. Эти заряды делают головную группу чрезвычайно гидрофильной (притягивающейся к воде). Углеводородные цепочки крайне гидрофобны (отталкиваются от воды). Клетки окружены водой и содержат много воды внутри. Заряженные головные группы стремятся быть в воде, тогда как углеводородные хвосты избегают воды. Чтобы одновременно удовлетворить требованиям заряженных гидрофильных головных групп и гидрофобных углеводородных хвостов, фосфолипиды организуются в двуслойную структуру, схематически изображённую на рис. 16.8.
Рис. 16.8.Схематическое изображение участка двойного фосфолипидного слоя с двумя молекулами холестерина. Головные группы (шары) заряжены и стремятся к воде. Углеводородные хвосты избегают воды, образуя двойной слой. Гидроксильная группа холестерина находится у границы воды
На рисунке показано сечение двуслойной фосфолипидной мембраны, которая полностью окружает и ограничивает клетку. Здесь шары — это заряженные головные группы, а волнистыми линиями представлены углеводородные цепочки. Реальная клеточная мембрана намного сложнее, чем показано на рис. 16.8. Она содержит множество белков, выполняющих специфические функции, такие как пропуск определённых ионов или молекул внутрь клетки и воспрепятствование прохождению других.
Помимо фосфолипидов, основной составляющей клеточной мембраны является холестерин. На него приходится около 30 % клеточной мембраны. На рис. 16.8 схематически представлены две молекулы холестерина, замещающие два фосфолипида. Холестерин важен, поскольку он управляет механическими свойствами двойного слоя. Без холестерина клеточная мембрана не могла бы функционировать. Поэтому холестерин крайне важен. Человеческий организм вырабатывает значительное количество холестерина, и лишь небольшая часть необходимого холестерина поступает с пищей. Короче говоря, если вы удалите из своего тела весь холестерин, то умрёте.
Проблема с холестерином
Проблема с холестерином состоит не в том, что вы получаете некоторое его количество с пищей, а в том, как он ведёт себя в организме. Вредное влияние холестерина на здоровье связано с жирами, но не потому что холестерин является жиром, и даже не потому, что жирная пища может содержать холестерин. Холестерин переносится в потоке крови, будучи связанным с очень крупными биомолекулярными комплексами, которые называются липопротеинами. Они состоят из очень крупных белков, фосфолипидов, жирных кислот, холестерина и других молекул. Липопротеины можно разделить по крайней мере на два класса: липопротеины низкой плотности (ЛПНП) и липопротеины высокой плотности (ЛПВП). Они имеют яйцеобразную форму и диаметр около 200 Å (200∙10−10м). Объём этих частиц составляет около 5000000 Å3. Для сравнения: объём молекулы холестерина — примерно 200 Å3. Таким образом, частицы ЛПНП и ЛПВП где-то в 20000 раз больше молекулы холестерина и переносят в потоке крови сразу много молекул холестерина. Высокий уровень ЛПНП по отношению к ЛПВП сильно коррелирует с ишемической болезнью сердца и атеросклерозом. Механизм этой связи пока не вполне ясен, но переносящие холестерин ЛПНП приводят к возникновению опасных отложений на стенках артерий, а ЛПВП — нет. Высокий уровень ЛПНП по сравнению с ЛПВП (большое значение отношения ЛПНП к ЛПВП) обусловлен потреблением насыщенных жиров и в ещё большей степени транс-жиров. Транс-жиры не только повышают уровень ЛПНП, но ещё и снижают уровень ЛПВП, усугубляя проблему. Таким образом, потребление жирной пищи имеет значение, но не потому, что она содержит холестерин. Что действительно важно, так это характер употребляемых с пищей жиров. Лучше использовать масла, содержащие большое количество полиненасыщенных жиров, которые не подвергались обработке, порождающей значительное количество транс-жиров.
В главе 14 мы обсуждали одиночные и двойные углеродные связи. Были описаны разные типы гибридных атомных орбиталей, служащих для образования молекулярных орбиталей. Квантовая теория позволяет во всех деталях объяснить химические связи и то, как их природа влияет на форму молекул и силу связей, удерживающих атомы вместе. В этой главе мы на примере жиров проиллюстрировали тот факт, что незначительные, казалось бы, особенности молекулярных связей — одиночные они или двойные, сколько имеется двойных связей, находятся ли они в цис- или транс-конформации — играют в биологии чрезвычайно важную роль. Геометрия двойных связей может быть в буквальном смысле вопросом жизни и смерти.
17. Парниковые газы
В этой главе мы рассмотрим, что происходит, когда уголь, нефть или природный газ сжигают на электростанциях для выработки энергии. Прежде всего, выясним, почему при сжигании угля образуется намного больше парникового углекислого газа, чем при сжигании нефти, которая, в свою очередь, даёт его в расчёте на единицу энергии больше, чем природный газ. Кроме того, углекислый газ столь сильно влияет на парниковый эффект по причине, связанной с фундаментальной квантовомеханической природой черноте́льного излучения и квантованием энергетических уровней.
Углекислый газ, образующийся при сжигании ископаемого топлива
В главе 15 обсуждалось превращение вина (этанола) в уксус (уксусную кислоту) в результате добавления кислорода к молекулам этанола. Когда это происходит, мы говорим, что этанол окисляется до уксусной кислоты. Окисление — химический процесс, который может принимать различные формы, но в случае превращения этанола в уксусную кислоту — это просто добавление кислорода. Процесс ускоряется биологическими энзимами. Углеводороды, например метан и вещества, входящие в состав мазута, тоже могут окисляться. Однако молекулы углеводородов очень устойчивы — они окисляются только при высокой температуре. Горение углеводородного топлива — это и есть процесс окисления. Для его протекания требуется тепло, но когда окисление началось, разрушение химических связей и образование новых молекул высвобождает дополнительное тепло (тепловую энергию), что делает процесс самоподдерживающимся.
Горение метана: природный газ
Рассмотрим сначала, что происходит, когда горит метан (природный газ). Модель молекулы метана изображена на рис. 14.1. Метан CH4 реагирует с кислородом с образованием воды H2O и углекислого газа CO2. Эту реакцию можно записать следующим образом:
CH4 + 2O2 → 2H2O + CO2.
Данное химическое уравнение показывает, что одна молекула метана реагирует с двумя молекулами кислорода, в результате чего образуются две молекулы воды и одна молекула углекислого газа. Стрелка направлена от реагентов к продуктам реакции. Про такое уравнение говорят, что оно сбалансировано, поскольку число атомов углерода, водорода и кислорода одинаково в левой и правой его частях. В химических реакциях комбинации атомов, составляющих молекулы, меняются, но число атомов каждого типа всегда остаётся неизменным. Кроме того, эта реакция порождает ещё и тепло. Энергия расходуется на разрушение C−H-связей в метане. Однако когда образуются связи O−H и C−O, энергия высвобождается. При образовании связей в молекулах воды и углекислого газа выделяется больше полезной энергии (называемой также свободной энергией), чем затрачивается на разрушение связей в метане. В результате горения метана высвобождается энергия, которая может, например, вскипятить воду для спагетти или крутить паровую турбину для выработки электричества.