Алекс в стране чисел. Необычайное путешествие в волшебный мир математики — страница 45 из 70

Впрочем, не все парадоксы Зенона решаются с помощью математики бесконечных рядов. В «парадоксе дихотомии» бегун отправляется из А в В. Назовем первую точку, которую он пройдет после того, как выйдет из точки А, точкой С. Но чтобы попасть в С, он должен сначала пройти через точку, расположенную на полпути до С. Следовательно, С не может быть первой точкой, через которую он пройдет. Получается, нет никакой «первой точки», через которую проходит бегун, потому что всегда найдется точка, через которую он должен пройти до того. Если же нет первой точки, через которую проходит бегун, говорит нам Зенон, значит, бегун никогда не сможет сдвинуться с точки А.

Согласно легенде, для опровержения этого парадокса киник Диоген молча встал и прошел от А до В, тем самым продемонстрировав, что движение возможно. Но зеноновский парадокс дихотомии не удается так просто списать со счета. За два с половиной тысячелетия, в течение которых ученые чесали затылки, никто не смог полностью разрешить эту загадку. Часть проблемы состоит в том, что непрерывная линия не допускает адекватного представления последовательностью ни из бесконечного числа дискретных точек, ни из бесконечного числа малых интервалов. Подобным же образом непрерывный промежуток времени невозможно адекватно представить бесконечным числом дискретных временных интервалов. Концепции непрерывности и дискретности не хотят уживаться друг с другом.

Десятичная система предоставляет нам чудесный пример парадокса в духе Зенона. Каково самое большое число, меньшее единицы? Это не 0,9, потому что 0,99 больше него, но при этом меньше единицы. Но это и не 0,99, поскольку 0,999 еще больше, но все равно меньше единицы. Единственный возможный кандидат — это периодическая десятичная дробь 0,9999…, где многоточие означает, что девятки продолжаются неограниченно. Здесь-то и заключается парадокс. Искомое число не может быть равно 0,9999…, потому что 0,9999… совпадает с числом 1!

Вот как на это можно смотреть. Если бы 0,9999… было числом, отличным от 1, то между ними был бы некий интервал на числовой прямой. А тогда было бы возможно втиснуть в этот интервал еще какое-то число — число больше 0,9999… и меньше 1. Но что это могло бы быть за число? Подобраться к 1 ближе, чем 0,9999…, нельзя. Таким образом, если 0,9999… и 1 неразличимы, то они должны совпадать. Сколь бы странным такое ни казалось, 0,9999… = 1.

Так какое же самое большое число, меньшее единицы? Единственное удовлетворительное заключение, которое можно сделать, исходя из этого парадокса, состоит в том, что самого большого числа меньше единицы не существует.

* * *

Парадокс, связанный с гонкой Ахилла за черепахой, разрешился, когда мы записали продолжительности его «шагов» как сумму с бесконечным числом слагаемых. Такие суммы известны также как бесконечные ряды. При сложении членов бесконечного ряда возможны два случая в зависимости от того, конечным или бесконечным будет предел, то есть то число, к которому сумма подходит все ближе и ближе по мере прибавления все новых членов. Если предел конечный, то ряд называется сходящимся. Если нет — ряд называется расходящимся.

Например, мы видели, что ряд

сходится, и сходится он к числу 2. Кроме того, много рядов, как мы видели, сходятся к числу π.

Напротив, ряд

1 + 2 + 3 + 4 + 5 +…

расходится, устремляясь в бесконечность.

Когда я учил математику, одним из моих любимых упражнений было занятие с бесконечными рядами, состоявшее в выяснении того, сходится данный ряд или расходится. Меня всегда поражало, что при всем колоссальном различии между сходимостью и расходимостью — различии между конечным числом и бесконечностью, отличающимися на бесконечность, — детали, определяющие поведение ряда, порой кажутся совершенно несущественными.

Взглянем на гармонический ряд:

Числитель каждого из членов здесь равен 1, а знаменатели — просто все натуральные числа. С виду ряд должен бы сходиться. Каждый следующий член в этом ряду делается все меньше и меньше, так что можно было бы ожидать, что сумма всех членов окажется ограниченной некоторым фиксированным числом. Однако же гармонический ряд — расходящийся, подобно замедляющейся, но не останавливающейся улитке. Сумма первых 100 членов ряда едва превышает 5. Сумма впервые превышает число 100 только после суммирования 15 092 688 622 113 788 323 693 563 264 538 101 449 859 497 членов. Эта упорная улитка будет продолжать свое движение к свободе, преодолевая любое заданное ей расстояние. В конце концов ряд достигнет миллиона, затем миллиарда, уходя все далее и далее к бесконечности. (Доказательство этого факта приводится в приложении 5 на сайте, посвященном этой книге.)

Гармонический ряд возникает при рассмотрении процесса укладки кирпичей. Пусть у вас имеются два одинаковых кирпича и вы желаете расположить их один на другом так, чтобы верхний кирпич выступал над нижним далеко, насколько возможно, но не падал. Для этого нужно положить верхний кирпич в точности на половину нижнего, как показано на рисунке, — так центр тяжести верхнего кирпича будет опираться на самый край нижнего.

А как же расположить три кирпича, спросим мы себя, чтобы суммарное их нависание было максимальным, но сама конструкция не опрокидывалась? Решение состоит в том, что самый верхний кирпич должен лежать на половине среднего, а средний — был бы сдвинут вдоль нижнего на четверть его длины, как показано на рисунке.

Продолжая в том же духе с большим числом кирпичей, мы получим общую закономерность: чтобы гарантировать максимальное суммарное нависание, самый верхний кирпич надо сдвинуть относительно второго на половину его длины, второй — на четверть длины третьего, третий — на одну шестую длины четвертого, а тот — на одну восьмую длины пятого и т. д. Получается «Пизанская башня» из кирпичей.

Как сложить кирпичи с максимальным нависанием так, чтобы они не опрокинулись


Полное нависание этой башни, представляющее собой сумму отдельных нависаний, дается следующим рядом:

что можно записать в виде

Но это — половина суммы гармонического ряда, если только мы не будем останавливаться и возьмем все бесконечное число членов. А поскольку мы знаем, что гармонический ряд растет до бесконечности, то после его деления на два все равно останется бесконечность, потому что бесконечность, деленная на два, — снова бесконечность. В терминах кирпичной кладки это означает, что теоретически возможно создать ничем не скрепленную конструкцию, свисающую на любую наперед заданную величину. Коль скоро деленный на два гармонический ряд рано или поздно превысит любое заданное число, если только взять достаточно много членов, нависание наклонной башни из кирпичей рано или поздно превысит любое заданное значение, если только положить друг на друга достаточно много кирпичей. Хотя это теоретически и возможно, практические аспекты построения башни с большим нависанием довольно пугающи. Дабы достичь нависания в 50 кирпичей, понадобится башня из 15 × 1042 кирпичей — что намного превысит расстояние от строительной площадки до края наблюдаемой Вселенной.

* * *

Гармонический ряд оказывается обильным источником разнообразных забав, так что давайте поиграем с ним еще немного. Рассмотрим гармонический ряд, в котором выкинут каждый член, содержащий в себе 9; получится снова бесконечный ряд. Другими словами, мы выкинем следующие члены:

А «общипанный» ряд будет иметь вид:

Вспоминая, что члены гармонического ряда суммируются к бесконечности, можно было бы думать, что гармонический ряд, лишенный девяток, также суммируется к достаточно большому числу. А вот и нет! Его сумма чуть меньше числа 23.

Отфильтровав девятки, мы приручили грозную бесконечность.

Этот результат представляется удивительным, но, посмотрев на происходящее повнимательнее, мы, несомненно, поймем, в чем тут дело. Устранение девяток избавляет нас только от одного из первых 10 членов гармонического ряда. Но уже в первой сотне удаляются 19 членов, а в первой тысяче — 271. Когда числа становятся очень большими, скажем, длиной в 100 цифр, подавляющее большинство их содержит хотя бы одну девятку. И оказывается, что «утоньшение» гармонического ряда за счет удаления членов с девятками удаляет почти все члены.

Однако тонкая настройка гармонического ряда может оказаться еще более захватывающей. Мы произвольным образом решили удалить девятки. Если бы мы удалили из гармонического ряда все члены, содержащие 8, то оставшиеся члены также сходились бы к конечному числу, и то же самое повторилось бы при удалении всех членов, содержащих 7, и вообще любую выбранную цифру. На самом деле нет никакой необходимости ограничиваться отдельными цифрами. Удалим все члены, содержащие любое выбранное число, и «утоньшенный» таким способом гармонический ряд окажется сходящимся. Таким числом может быть, например, 9 или 42, или 666, или 314 159, — в каждом случае действует то же самое рассуждение.

Возьмем для примера число 666. В числах между 1 и 1000 сочетание цифр 666 встречается один раз. Между 1 и 10 000 оно встречается 20 раз, между 1 и 100 000 — 300 раз. Другими словами, процент его появления равен 0,1 % в первой тысяче чисел, 0,2 % — в первых 10 000 и 0,3 % — в первых 100 000. По мере перехода ко все большим и большим числам сочетание 666 будет встречаться все чаще и чаще. В конце концов окажется, что почти все числа содержат в себе 666. Стоит только выбросить их из гармонического ряда — и полученный «утоньшенный» ряд будет сходиться.

В 2008 году Томас Шмелцер и Роберт Бейли вычислили, что гармонический ряд, лишенный членов, содержащих число 314 159, суммируется к числу, немного превосходящему 2,3 миллиона. Это большое число, но ему ох как далеко до бесконечности.

Отсюда следует, что «гармонический ряд», состоящий из одних только членов, включающих сочетание цифр 314 159, должен суммироваться к бесконечности. Другими словами, ряд