Таким образом, узнику осталось провести в темнице еще 4 года.
36. Долго ли выбраться из колодца? Те, кто думают, что лягушка выберется из колодца за 30 дней, ошибаются: лягушка могла бы выбраться из колодца к вечеру на 28-й день. Действительно, утром на 2-й день лягушка находится на высоте 1 фут над дном колодца, утром на 3-й день — на высоте 2 фута и т. д. Наконец, утром на 28-й день лягушка находится на высоте 27 футов над дном колодца. К вечеру того же дня она достигнет верха и вылезет из колодца, после чего ей уже не придется соскальзывать вниз.
37. Успеет ли велосипедист на поезд? Велосипедист рассуждал неверно: он усреднял расстояния, а не время. Если бы со скоростью 4 мили в час, 8 миль в час и 12 миль в час он двигался одно и то же время, то его средняя скорость действительно составила бы 8 миль в час, но большую часть времени он затратил на подъем в гору (со скоростью 4 мили в час), а меньшую — на спуск под гору (со скоростью 12 миль в час).
Нетрудно подсчитать, сколько времени он пробыл в пути. Подъем в гору занял у него 1 ч, полчаса (или 30 мин) он затратил на передвижение по ровному участку дороги и треть часа (или 20 мин) на спуск под гору. Всего в пути он пробыл 1 ч 50 мин, опоздав к поезду на 20 мин.
38. Не опоздал ли пассажир на поезд? На первую станцию пассажир прибыл через минуту после того, как ушел поезд. Десять миль в час — это одна миля за 6 мин или полторы мили за 9 мин. Таким образом, на следующую станцию поезд прибыл через 8 мин после того, как пассажир прибыл на первую станцию. На следующей станции поезд стоял 14½ мин, поэтому у пассажира было в запасе 22½ мин, чтобы успеть сесть на поезд на следующей станции. Четыре мили в час — это 1 миля за 15 мин, или полторы мили за 22½ мин. На следующую станцию пассажир прибудет как раз вовремя, чтобы успеть сесть на поезд.
39. Далеко ли до школы? Разница во времени между опозданием на 5 мин и приходом за 10 мин до начала урока составляет 15 мин. Следовательно, если мальчик будет идти в школу со скоростью 5 миль в час, то он сэкономит 15 мин (по сравнению с тем, сколько он затратил бы на дорогу, если бы шел со скоростью 4 мили в час). Пять миль в час — это одна миля за 12 мин, а 4 мили в час — это 1 миля за 15 мин. Следовательно, идя быстрее, мальчик экономит по 3 мин на каждой миле, а 15 мин — на расстоянии 5 миль.
Значит, школа находится в 5 милях от дома.
Проверка. Идя со скоростью 5 миль в час, мальчик затрачивает на дорогу один час, а идя со скоростью 4 мили в час, — час с четвертью (за час он проходит первые 4 мили, а за четверть часа — последнюю милю), то есть 1 ч 15 мин. Разница по времени действительно составляет 15 мин.
40. Разве не печально? История действительно немного печальная, так как при подсчете барышей и убытков торговец произведениями искусства просчитался: в тот день он не только ничего не заработал, но и потерпел убыток в 20 долларов.
Попробуем разобраться, почему так получилось. Первую картину он продал с 10 %-ной прибылью. От продажи ее он выручил 990 долларов. За сколько он купил ее? Так как прибыль составляет 10 % не от 990 долларов, а от первоначальной стоимости картины, то 990 долларов — это 110 % от первоначальной стоимости картины, или 11/10. Следовательно, за картину торговец заплатил 10/11 от 990, то есть 990 долларов.
[Проверка. За картину торговец заплатил 900 долларов, 10 % от 900 составляют 90 долларов, поэтому от продажи картины он выручил 990 долларов, получив при этом прибыль 90 долларов.]
А как обстоит дело со второй картиной? От продажи ее торговец потерял 10 % от ее первоначальной стоимости, поэтому вторую картину он продал за 90 %, или 9/10, от ее первоначальной стоимости. Следовательно, при покупке второй картины торговец заплатил за нее 10/9 от 990 долларов, то есть 1100 долларов.
[Проверка. За вторую картину торговец заплатил 1100 долларов, 10 % от 1100 составляют 110 долларов, поэтому он продал ее за 1100 − 110 = 990 долларов.]
Таким образом, от продажи второй картины он потерпел убыток в 110 долларов, а от продажи первой картины получил прибыль всего 90 долларов. Следовательно, в тот день он потерял всего 20 долларов.
41. Кто старше? Прежде всего вычислим, через сколько дней часы Болванщика и Мартовского Зайца покажут одно и то же время. Так как часы Мартовского Зайца отстают с такой же скоростью, с какой спешат часы Болванщика, то в следующий раз они покажут одно и то же время, когда часы Болванщика уйдут вперед на 6 ч, а часы Мартовского Зайца отстанут на 6 ч. (На тех и других часах будет 6 ч, причем и те и другие часы будут показывать неверное время.) За сколько дней часы Болванщика уйдут вперед на 6 ч. За час они уходят вперед на 10 с, за 6 ч — на 1 мин, за сутки — на 4 мин, за 15 суток — на 1 ч, за 90 суток (дней на календаре) — на 6 ч. Таким образом, через 90 дней на часах Болванщика и Мартовского Зайца стрелки снова будут показывать одно и то же время.
Нам неизвестно, в какой из дней января Болванщик и Мартовский Заяц поставили на своих часах точное время.
Но если бы это произошло в любой из дней, кроме 1 января, то день, когда часы Болванщика и Мартовского Зайца в следующей раз покажут одно и то же время (а это событие, как мы установили, произойдет через 90 дней), пришелся бы не на март, а на апрель (или даже на май). Следовательно, Болванщик и Мартовский Заяц могли сверить свои часы только 1 января. Но даже в этом случае их часы покажут в следующий раз одно и то же время в марте только при условии, если год високосный! (В этом читатель без труда убедится с помощью календаря: через 90 дней после 1 января в обычный год наступает 1 апреля, а в високосный год — 31 марта!) Тем самым доказано, что 21 день рождения Мартовского Зайца приходится на високосный год. Следовательно, Мартовский Заяц мог родиться в 1843, а не в 1842 году или 1844 году. (Через 21 год после 1843 года наступает високосный 1864 год.) По условиям задачи только один из двух (либо Мартовский Заяц, либо Болванщик) родился в 1842 году. Следовательно, в 1842 году родился Болванщик. Значит, Болванщик старше Мартовского Зайца.
Глава 5
42. Появление первого шпиона.C заведомо не может быть рыцарем, так как ни один рыцарь не стал бы лгать и утверждать, будто он шпион. Следовательно, C либо лжец, либо шпион. Предположим, что C шпион. Тогда показание A ложно, значит, A шпион (A не может быть шпионом, так как шпион C) и рыцарем может быть только B. Но если B рыцарь, то как он мог дать ложные показания, утверждая, будто A рыцарь? Следовательно, предположение о том, что C шпион, приводит к противоречию. Значит, C лжец. Тогда показание B ложно, поэтому B либо лжец, либо шпион. Но так как лжец B, то шпионом должен быть A. Следовательно, A может быть только рыцарем.
Итак, A рыцарь, B шпион и C лжец.
43. Глупый шпион. Ложное заявление, изобличающее шпиона, могло быть, например, таким: «Я лжец».
Рыцарь никогда не лжет и поэтому не станет утверждать о себе, будто он лжец. С другой стороны, лжец никогда не говорит правды и не станет признаваться, что он лжец. Только шпион может сделать ложное признание, будто он лжец.
44. Еще один глупый шпион. Истинное заявление, изобличающее шпиона, могло быть, например, таким: «Я не рыцарь». Действительно, ни рыцарь, ни лжец не могли бы сказать о себе такое. Рыцарь никогда не лжет и не станет утверждать, будто он не рыцарь. Лжец всегда лжет и не станет признаваться, что он не рыцарь. Значит, такое заявление мог бы сделать только шпион.
45. Хитрый шпион. Если бы A ответил на вопрос судьи «да», то тем самым он изобличил себя как шпиона, так как судья (вместе с присяжными) мог бы рассуждать следующим образом:
«Предположим, что B шпион. Тогда все трое обвиняемых дали бы правдивые показания, что невозможно, так как один из них лжец. Следовательно, B не может быть шпионом. Значит, его показание ложно, поэтому B лжец. Показание C также ложно, а поскольку C не лжец (ибо лжец B), то он шпион».
Таким образом, если бы на вопрос судьи C ответил «да», то он был бы изобличен как шпион. Зная это, C благоразумно ответил «нет», лишив тем самым суд возможности установить, шпион он или коренной житель. (Суду удалось лишь установить, что либо C рыцарь, а B шпион, либо C лжец, а A шпион, либо C шпион.)
46. Кто Мердок? Так как A утверждает, что он шпион, то A либо лжец, либо шпион. Аналогичным образом, так как C утверждает, что он шпион, C либо лжец, либо шпион. Следовательно, из двух подсудимых A и C один лжец, а другой шпион. Значит, B рыцарь и дал на суде правдивые показания: A шпион.
47. Возвращение Мердока. Если A Мердок, то все три показания истинны, что невозможно, так как один из троих подсудимых лжец. Если C Мердок, то все три показания ложны, что также невозможно, так как один из троих подсудимых рыцарь. Следовательно, Мердоком должен быть B.
48. Более интересный случай. Задачу невозможно было бы решить, если бы в условиях не было ссылки на то, что суд изобличил шпиона, после того как на него указал C: ведь мы знаем, что суд смог установить, кто из троих шпион, и это весьма важная «зацепка»!
Предположим, что C обвинил A в том, что тот шпион. Располагая этими данными, судья не мог бы решить, кто шпион, поскольку они позволяют лишь утверждать, что либо A шпион, B лжец и C рыцарь либо B шпион, A рыцарь и C лжец, либо C шпион, A лжец и B рыцарь.
Таким образом, если C указал на A как на шпиона, то судья не мог бы изобличить настоящег