Альманах "Эврика"-84 — страница 15 из 68

жмолекулярного взаимодействия. В воде, например, атомы водорода одной молекулы притягиваются к атомам кислорода другой и т. д. Именно эта чрезвычайно развитая сеть водородных связей и придает воде многие поистине уникальные свойства, позволяя, в частности, говорить, что структура этой жидкости в чем-то сродни структуре кристалла.

Ученые выяснили, что если в свободном объеме вода как бы сама себе задает структуру, то при соприкосновении с твердой поверхностью структура последней начинает «навязываться» граничащему с ней слою жидкости толщиной от 10 до 100 ангстрем (ангстрем равен одной десятимиллионной доле сантиметра). Коль скоро структура этого граничного слоя воды оказывается измененной, иными становятся и его физико-химические свойства, в частности вязкость и способность растворять вещества.


ПАРАДОКСЫ ГРАНИЧНОГО СЛОЯ

Граничный слой воды с измененными свойствами существует, естественно, лишь в зоне, близкой к твердой поверхности. Однако представим, что вода находится в очень тонком капилляре— тоньше самого граничного слоя. И тогда окажется, что вся жидкость в капилляре уже не та, какой она была в свободном объеме. То же самое произойдет, если жидкостью пропитать какое-либо пористое вещество. Но ведь пористые вещества, пропитанные жидкостями, встречаются буквально на каждом шагу. Это и почва, и различные строительные материалы. И во всех этих пористых материалах вода, как выяснилось, имеет вовсе не те свойства, каких от нее следовало бы ожидать.

Одна из серьезнейших проблем, стоящих перед человечеством, — дефицит пресной воды. В разработке экономических методов опреснения морской воды советские специалисты достигли значительных успехов. В частности, среди этих методов весьма перспективным оказалось использование так называемых мембранных фильтров. Суть проста: морская вода продавливается сквозь мембрану, не пропускающую растворенные соли. И в этом «сите», способном отделять ионы от молекул воды, главную роль играют как раз особые свойства граничного слоя. Дело в том, что, как только соленая морская вода попадает в пору мембранного фильтра, она сразу же оказывается как бы в очень тонком капилляре и ее свойства существенно меняются. В частности, меняется ее способность растворять соли. Значит, если с силой продавливать через эту пору соленую воду, то с другой стороны мембраны выдавится вода, содержащая лишь столько соли, сколько ее могло раствориться в граничном слое.

Если же за одним фильтром поставить второй, третий, то в конце концов можно получить воду, практически лишенную солей.

Разумеется, поры мембранного фильтра должны быть очень тонкими, а чем тоньше пора, тем большее давление понадобится для того, чтобы выдавить через нее капельку пресной воды. Получается замкнутый круг: чтобы увеличить производительность фильтра, поры нужно увеличить, а чтобы фильтр работал лучше, их нужно уменьшить…

Изучение свойств граничных слоев позволит, возможно, справиться с этой проблемой: ведь если придать материалу мембранного фильтра способность сильнее притягивать молекулы воды (эта операция носит название гидрофилизации), то толщина граничного слоя существенно возрастет и диаметр пор можно значительно увеличить, не ухудшая способности фильтра опреснять воду.


ПРОТИВ КОВАРСТВА ВЕЧНОЙ МЕРЗЛОТЫ

Значительная территория нашей страны лежит в зоне вечной мерзлоты. Сейчас природные богатства этих мест начинают интенсивно осваиваться. А это значит, что на мерзлом грунте прокладываются дороги, строятся жилые дома и предприятия.

Вечная мерзлота доставляет строителям немало хлопот. Например, если грунт под фундаментом подтает, то здание осядет и может разрушиться. А еще больше неприятностей доставляет так называемое пучение мерзлого грунта: иногда без всяких видимых причин почва под строением или дорожным полотном начинает медленно, неудержимо вспухать, из-под земли выпирает невесть откуда взявшаяся глыба льда, сокрушающая творения рук человеческих.

В чем причина этого явления? Оказалось, что тут не обошлось без граничного слоя. Это было проверено с помощью простых, но эффективных модельных экспериментов. Вода в капилляре была заморожена, и один конец капилляра соединен с баллоном со сжатым газом. Потом температуру стали медленно повышать, но не успела она еще достичь нуля, как ледяной столбик медленно пополз по капилляру!

Сотрудниками Института физической химии было обнаружено и другое явление, имеющее самое непосредственное отношение к морозному пучению грунтов, — так называемый термокристаллизационный перенос. Если в лед, находящийся в капилляре, был вморожен пузырек воздуха, то пузырек начинал медленно перемещаться к более холодному концу: с одной стороны пузырька лед таял и испарялся, а с другой кристаллизовался. Оказалось, что в тонких порах этот процесс значительно ускоряется за счет перемещения вязкого, но незамерзающего граничного слоя воды. Аналогичное явление роста льда в пористых телах и объясняет морозное пучение. Вместе с тем с помощью несложных приемов этот процесс можно не только приостановить, но и повернуть вспять, то есть добиваться «рассасывания» образовавшихся в вечномерзлом грунте ледяных линз.

Учитывая обнаруженные закономерности поведения льда в пористых телах, удалось дать и научно обоснованные рекомендации по созданию морозостойких строительных материалов: ведь, изменяя свойства поверхности пор, можно регулировать и свойства граничного слоя, а значит, предотвращать образование скоплений льда, способного разрушить и кирпич, и бетон, и другие строительные материалы.


НЕОТВРАТИМ ЛИ ГИБЕЛЬНЫЙ ДЕФИЦИТ ПРЕСНОЙ ВОДЫ?

«Человечеству грозит убийственная жажда», — предупреждают футурологи-пессимисты. Насколько серьезны такого рода предсказания?

Спору нет, ситуация отнюдь не беспроблемна, а кое-где и весьма тревожна. В десятках стран ощущается постоянный дефицит пресной воды, многие государства жестко нормируют ее потребление в засушливые годы, а иные даже ввозят воду наряду с прочими импортными товарами (Голландия и ФРГ, например, из Норвегии и Новой Зеландии).

1981–1990 годы объявлены ООН Десятилетием питьевой воды. Трудности с обеспечением ею испытывают приблизительно два миллиарда людей.

Чтобы как можно лучше удовлетворить растущий спрос на нее, предстоит сделать очень многое. Прежде всего надо точнее оценить ресурсы пресных вод в каждой местности, стране и на Земле в целом, наладить более рациональное, максимально бережное их использование и т. д.

Задачи сложные, однако реальные. Свой вклад в их решение вносят советские специалисты. Примером могут служить итоги проведенных ими крупномасштабных исследований: Атлас мирового водного баланса (50 карт, составленных по данным почти 70 тысяч метео- и гидрологических станций) плюс монография «Мировой водный баланс и водные ресурсы Земли»— детальный анализ по всем регионам планеты. Эти работы не имеют аналогов в мировой практике. По решению ЮНЕСКО оба труда опубликованы на английском и испанском языках. Авторский коллектив, подготовивший монографию и атлас, удостоен Государственной премии СССР за 1981 год.


«ПЛАНЕТА ВОДА» — ИСПОЛИНСКАЯ, НО НЕ БЕЗДОННАЯ БОЧКА

Земля из космоса выглядит скорее как «планета Вода», ибо в отличие от иных небесных тел имеет мощную гидросферу, под которой прячет более двух третей своей тверди. Но в основном это соленая вода. А пресная в общем объеме составляет менее 2,5 процента, в том числе наиболее доступная нам (не считая полярных льдов) — всего 0,3 процента.

Человечество потребляет на разные нужды уже около 2600 кубических километров — почти 6 процентов всей пресной воды. Но с ростом мирового хозяйства и населения расход увеличивается и может достичь 6 тысяч кубических километров в 2000 году.

Ясно, нельзя не учитывать ограничения экологического порядка. Так, если промышленные жидкие сбросы не очищены, то для обезвреживания нужно часто 15-кратное, а то и 40-60-кратное разбавление; если очищены — шестикратное как минимум. Если не принять соответствующих мер, в начале XXI века на это будет тратиться чуть ли не весь годовой сток рек мира. Очевидно бережное отношение, все более настоятельное.

Правда, немалые надежды возлагаются на опреснение морской воды. Оно успешно осуществляется в нашей стране, например, на Шевченковской атомной электростанции на берегу Каспийского моря и на других крупных установках, каких на Земле уже немало. Но их вклад пока весьма скромен. Если рассчитывать на этот, метод, то не в ближайшем, а в отдаленном будущем. То же самое можно сказать о перспективе утолять жажду водой, получаемой из водорода и кислорода или из растопленных атомным теплом льдов Антарктиды и Гренландии.


ПРОБЛЕМЫ, ПОИСКИ, РЕШЕНИЯ

Какие же решения более реальны сегодня? Одно из них таково: утилизировать бытовые и некоторые промышленные жидкие отходы (например, не спускать в реку или озеро, а поливать ими поля). Земли при этом не только увлажняются, но и удобряются. Применительно к техническим и даже кормовым культурам этот метод проверен долголетней практикой в целом ряде колхозов и совхозов.

Понятно, не все стоки годятся для орошения. Многие способны лишь загрязнять окружающую среду. Тогда можно и нужно переходить на замкнутые циклы. Именно это решение представляется сейчас важнейшим. Оно выгодно втройне: экономится вода (ее после очистки используют снова и снова), не наносится ущерб природе, из отходов извлекаются ценные вещества.

Третье направление: снижать потребление воды производством с помощью совершенных технологий. Есть и другие возможности. Так, крупные регулирующие водохранилища в нашей стране позволяют увеличить гарантированный речной сток. Прибрежные лесонасаждения сдерживают высыхание водоемов. На орошение идет не-опресненная морская вода (слабосоленая, как, допустим, балтийская). И так далее.

Решаемые в нашей стране задачи порой беспрецедентны по сложности и размаху. Например, мелиорация переувлажненных почв в Белорусском Полесье и Нечерноземной зоне РСФСР, ирригация на сотнях тысяч гектаров в Голодной и Каршинской степях, Мургабском и Тедженском оазисах в Средней Азии, прокладка гигантских каналов Иртыш — Караганда, Днепр — Донбасс, Северо-Крым-ского и других.