Альманах "Эврика"-84 — страница 45 из 68

Устанавливая аппаратуру глубоко под водой, мы можем устранить или по крайней мере значительно снизить уровень помех, создаваемых другими приходящими на Землю частицами космического излучения.

Как ни мала вероятность взаимодействия нейтрино с веществом, все же она отлична от нуля. В очень редких случаях нейтрино сталкивается с протоном — ядром атома водорода или частицами, входящими в состав ядра атома кислорода. При столкновении рождаются заряженные частицы, которые уже можно «поймать». Двигаясь в воде со скоростью, близкой к световой, эти частицы будут испускать свет, который можно зарегистрировать. Зафиксировав его, мы сможем вычислить, какой энергией обладало нейтрино, откуда оно к нам прилетело.

Свечение будет фиксироваться с помощью установленных в воде на тросах чувствительных светоприемников. Полученная информация по кабельным линиям связи пойдет на береговой — центр приема и обработки данных. Предполагается, что первые установки будут содержать несколько тысяч светоловушек и занимать объем, близкий к кубическому километру.

По виду этот подводный лес будет запоминать пчелиные соты со стенками длиной около километра. В каждой ячейке этих сотов будет содержаться свыше десяти тысяч тонн воды.

Но время идет, и у специалистов возникают новые идеи. Советские ученые Аскарьян, Б. Долгошеин и ученый из США Т. Боуэн предложили регистрировать акустический сигнал, чем-то напоминающий звук при откупоривании бутылки шампанского. Его издают заряженные частицы, образующиеся под действием нейтрино очень высоких энергий. Если этот метод получит путевку в жизнь, то регистрирующая аппретура окажется проще и дешевле.

Если сама идея глубоководной регистрации мюонов и нейтрино обсуждается уже более двадцати лет, то первые фактические шаги начали делаться в — ССР, США и Японии лишь в самые последние годы. Американскими физиками разработаны проекты серии глубоководных детекторов, известных под названием ДЮМАНД. Название проекта образовано из первых букв английской фразы. В переводе — «глубоководная регистрация мюонов и нейтрино».

Детекторы предполагается установить в Тихом океане близ Гавайских островов на глубине около пяти километров. Проходят испытания первые образцы глубоководных светоприемников, разрабатываются специальные фотоэлектронные умножители высокой чувствительности, ведется исследование оптических свойств океанской воды. На базе Гавайского университета (США) создан специальный научный центр глубоководных исследований.

В Советском Союзе также ведутся исследования в этом направлении. Суда Академии наук СССР начали всестороннее обследование некоторых перспективных, с нашей точки зрения, районов Мирового океана. Начаты поисковые работы с целью создания новых типов высокочувствительных светоприемников.

Местом для проведения испытаний опытных образцов глубоководной аппаратуры и создания действующих прототипов больших океанских детекторов выбрано озеро Байкал. Учеными Института ядерных исследований АН СССР, работающими совместно со своими коллегами из университетов Москвы, Иркутска, Томска и институтов Сибирского отделения АН СССР, созданы и испытаны на Байкале на глубинах свыше одного километра первые образцы глубоководных светоприемников.

Выполняется широкая программа исследований интересующих нас свойств байкальской среды, готовятся к постановке первые глубоководные системы для регистрации мюонов космических лучей. Уникальные условия озера (глубина около полутора километров, высокая прозрачность воды, отсутствие сильных течений, наличие устойчивого ледяного покрова, позволяющего вести монтаж аппаратуры со льда) дают возможность создать здесь глубоководные системы размером вплоть до сотен миллионов кубических метров. Они будут не только служить прообразами больших океанских детекторов, но и позволят провести на их основе широкий спектр исследований в области физики элементарных частиц и астрофизики.


К ТАЙНАМ МИКРОМИРА

ИБР-2 — мощный импульсный реактор на быстрых нейтронах — пущен в Лаборатории нейтронной физики Объединенного института ядерных исследований в Дубне. Специалисты считают, что его запуск обеспечит институту ведущее положение в мировой науке на ближайшие 10–15 лет. Ученые одиннадцати социалистических стран, работающие в этом международном физическом центре, получили новую базовую установку для изучения структуры и свойств материи, С запуском ИБР-2 открываются новые возможности для физиков-исследователей. По импульсной мощности (100 МВт) этот реактор превосходит все, что существует в мире на стационарных реакторах.

Пять раз в секунду ИБР-2 выбрасывает мощные потоки нейтронов, которые выводятся из реактора по 14 каналам на разные расстояния: десятки, сотни и даже тысячу метров. Имеются два больших экспериментальных зала, в которых ученым предоставлена возможность проводить одновременно до 20 сложных экспериментов, позволяющих решать современные проблемы нейтронной физики. В то же время реактор безопасен в работе (он снабжен двумя поясами защиты), а конструкция и автоматика систем управления реактором гарантирует от каких бы то ни было неожиданностей — опасность взрыва исключена.

…На одной из встреч в Лаборатории нейтронной физики ее директор академик Илья Михайлович Франк шутливо заметил, что никакой нейтронной физики не существует, а есть только методы использования нейтронов в самых разных приложениях: в физике элементарных частиц, в физике конденсированных сред (включая и молекулярную биологию) и в ядерной физике. Как получить насыщенный поток нейтронов, если не существует их природного источника?

Появление в 40-х годах атомных реакторов позволило нейтронной физике сделать огромный шаг вперед. Но в исследовательских реакторах удельная мощность не очень велика — в лучшем случае 60 тысяч кВт. Естественно, возник вопрос: как получить более мощные источники нейтронов?

Оригинальное и эффективное решение этой задачи предложил в свое время член-корреспондент Академии наук СССР Дмитрий Иванович Блохинцев. Оно состоит в том, чтобы использовать вместо обычного реактора, создающего постоянный поток нейтронов, реактор импульсный, который дает короткие периодически повторяющиеся вспышки нейтронов. С 1970 года в Лаборатории нейтронной физики велось строительство мощного импульсного реактора на быстрых нейтронах с жидкометаллическим охлаждением. Реактор получил название ИБР-2. Он способен давать во время вспышки мощность около 8000 мегаватт. Это громадная мощность — мощность нескольких атомных электростанций.

Дубненцы планируют на импульсном реакторе провести большую программу исследований. Возможно, ученые выяснят, каким образом полимеры образуют свою структуру, каков характер химических связей в кристаллах. Это позволит создавать материалы с Заданными физико-химическими свойствами, необходимые народному хозяйству.

Существует программа исследований с помощью ультрахолодных нейтронов. Такие нейтроны можно исследовать как любой химический элемент. И если окажется, что у нейтрона есть электрический дипольный момент, то коренным образом изменятся теоретические представления о природе Вселенной.

Известно, что быстрые нейтроны обладают благоприятными радиологическими характеристиками. Поэтому ученые Дубны надеются с их помощью проводить диагностику злокачественных образований.


У НЕЙТРОНА-ЗАРЯД?

Нейтрон получил свое название благодаря тому, что физики были абсолютно уверены: он — нейтрален, не имеет электрического заряда. Но этой уверенности явно поубавилось. И мы сейчас заняты тем, что ищем в нейтроне… слабые электрические свойства. Нужно проверить и недавно высказанное предположение, что нейтрон может переходить в антинейтрон. Если эти поиски увенчаются успехом, перед Физиками, изучающими ядра атомов, откроются совершенно новые перспективы.

У ученых к нейтронам особое отношение. Вместе с протонами они образуют ядра атомов. Но, если протоны имеют заряд и поэтому их можно одержать, например, с помощью электромагнитного поля, то нейтроны долго считались «неуловимыми». Тем не менее одна из последних работ нашей лаборатории увенчалась получением нейтронного газа из так называемых ультрахолодных нейтронов. Этот газ можно хранить… даже в обычной стеклянной бутылке, заткнутой пробкой. И нейтроны, подобно сказочным джиннам будут «сидеть» в ней такое время, какое нужно исследователям, чтобы изучить их.

В своем кругу физики называют нейтрон рабочей лошадью атомной энергетики. Выделяясь при распаде атомных ядер, он участвует во всех реакциях, протекающих в ядерных и термоядерных установках. И он же причина многих сложностей. Под действием нейтронов бетон вспучивается и трескается, сталь «разбухает» и делается хрупкой, как стекло, изоляторы начинают проводить электрический ток. Все эти явления мы изучаем в нашей лаборатории, помогая энергетикам создать более совершенные и надежные атомные установки.

До последнего времени основным нашим «инструментом» был уникальный, единственный в мире импульсный источник нейтронов ИБР-30. Создавая мощнейшие импульсы нейтронного излучения, он позволяет, образно говоря, «просвечивать» не только предметы, но и явления — получать мгновенные фотографии стремительных процессов, заглянуть в самые «потаенные» структуры материи, исследовать образцы из самых разнообразных материалов. Но уже сейчас в нашей лаборатории вводится в строй в сотни раз более мощный импульсный реактор ИБР-2, который откроет перед исследователями новые возможности.

Что мы ждем от него? Нейтроны, например, могут многое рассказать о живой материи. В отличие от электронного микроскопа, который показывает строение мертвых, препарированных клеток, нейтронный пучок позволяет заглянуть в живой организм, не опасаясь разрушить его ткани или нарушить нормальную работу.

Сейчас, например, с помощью нейтронов мы изучаем иммуноглобулины— внутриклеточные структуры, которые выводят из организма вредные вещества. Задача состоит в том, чтобы лучше разобраться в механизме иммунной защиты нашего организма, вооружить медиков действенными методами, позволяющими бороться с «поломками» в нем. Нейтронные пучки могут повысить и точность диагностики при опухолевых заболеваниях, просвечивание ими помогает установить размеры и расположения новообразований. Наконец, эти работы позволили нам взяться за нейтронную терапию — разраб