Тут кстати будет привести то, что написал по этому поводу и хиви НАСА А. Марков: «В конечную фазу прилунения (зависание над поверхностью) летательный аппарат переходит над выбранной «посадочной площадкой». Оптимальная высота этого режима 8—10 м от поверхности до центра масс LM. Лунный модуль «Орел» миссии «Apollo-11», имея средний расход топлива при посадке (при плавно изменяемой тяге двигателя на минимальную) –10—5 кг/сек, опускался на поверхность в режиме зависания –5 секунд и еще 0,9 секунды двигатель работал уже у ставшего на грунт LM.
Какую работу в течение 6 секунд произведут продукты выхлопа (-40 кг топлива) камеры сгорания ЖРД, регулируемой к минимуму (R = 450 кг) реактивной тяги, вылетающие из конусного сопла диаметром 1,5 м, опускающегося на поверхность с высоты – 5,5–0,5 м?» – задал коварный вопрос большой специалист космической техники, но так и не ответил на него. (Хотя, собственно, что мы должны ожидать от человека, которого в школе не сумели обучить определению угла прямоугольного треугольника по двум катетам?)
Придется мне, бывшему металлургу, этим заняться, благо хиви привели необходимые данные для расчета. Итак.
Если бы посадочный модуль просто упал на Луну с высоты своего зависания над ней, то он совершил бы работу, равную своему весу, умноженному на высоту падения. Вес модуля округлим до 1200 кгс, поскольку на высоте зависания еще не все топливо было выработано, а высоту зависания дал хиви Марков – 5,5 м от опор до поверхности Луны. Итого, работа падения будет 1200 × 5,5 = 6600 кгс м.
С этой высоты модуль падал бы 2,6 сек. При этом средняя мощность его падения была бы: 6600 / 2,6 = 2538 кгс м/сек. Но он спускался на реактивной струе двигателя и спускался 6 секунд, как утверждает Марков. Следовательно, средняя мощность спуска была: 6600 / 6 = 1100 кГс м/сек. До этой мощности мощность падения снизила мощность двигателя модуля, соответственно она в среднем была равна: 2538–1100 = 1438 кгс м/сек. Работая 6 секунд, двигатель совершил работу: 1438 × 6 = 8630 кгс м.
И хотя Армстронг «вспоминает», что пыль от работы двигателя стало выносить с высоты 30 метров, но давайте не будем жадничать и будем считать, что лишь половина этой работы, то есть 4315 кгс, пошла на вынос грунта из-под «Аполлона-11», а остальная работа пошла на расширение газовой струи в вакууме.
Используя данные исследований грунта «Луны-16»[112], я сначала рассчитал среднюю плотность частиц реголита, считая их сферами. Получилось 1,88 мг/мм3. Это меньше, чем плотность базальта (2,9–3,0), но ведь частицы реголита на самом деле не сферы. Однако я и дальше буду считать их сферами, поэтому тут ошибки в расчете не будет.
По тем же данным[113]. Средняя частица реголита на глубине в 30 см имеет размер 0,114 мм. Считая и ее сферой, я нашел, что ее массу следует оценить в 0,0014 мг, а площадь поперечного сечения – в 0,01 мм2.
Считаем для простоты, что газовая струя из сопла проникает в реголит и по окружности сопла (диаметр – 1,37 м) создает зону со средним давлением, как подсчитали хиви: 1100 / 4775 = 0,074 кгс/см2 или 0,74 гс/мм2.
Проникшие в площади этого круга в реголит газы будут расширяться в горизонтальном направлении, толкая перед собой частицы реголита. Сила, с которой они будут это делать, будет равна разнице давлений перед частицей и за ней. Если смотреть от центра струи, то удельное давление перед частицей будет обратно пропорционально площади фронта давления перед ней, а за частицей – фронта давления за ней. Средневзвешенный диаметр внутри струи газов (такой, который делит ее сечение на две равные по площади части) будет равен:
или 969 мм. Считаем, что при расчете средних значений это диаметр фронта давления за частицей. Диаметр фронта перед частицей будет больше на два диаметра частицы, т. е. на 2 × 0,114 = 0,228 мм. Это число увеличит внешний фронт по отношению к внутреннему на 0,228 / 969 × 100 = 0,024 %. Соответственно сила, которая давит на частицы в пределах средневзвешенного радиуса, будет равна: 0,74 гс/мм2 × 0,00024 = 0,00018 гс/мм2 или 0,18 мгс/мм2. Соответственно, на среднюю частицу с поперечным сечением в 0,01 мм2 будет давить сила в 0,0018 мгс.
Эта сила придаст частице ускорение, равное ее отношению к массе средней частицы: 0,0018 мгс / 0,0014 мг = 1,3 м/сек2. Давайте примем (теперь уж без этого не обойтись), что грунт выносился с площади с радиусом, примерно равным двойному радиусу сопла, т. е. с круга диаметром 3 м, и средняя частица под воздействием рассчитанной нами в среднем силы пролетала в среднем же 0,75 м. При ускорении 1,3 м/сек2 ей на это требовалось 1,1 сек. Тогда средняя скорость, с которой средняя частица выносилась из грунта струей двигателя «Аполлона-11», была равна 1,3 × 1,1 = 1,4 м/сек.
Рассчитанная нами ранее работа в 4315 кгс перешла в кинетическую энергию частиц грунта, и при средней скорости 1,4 м/сек она вынесла из-под «Аполлона-11»: 4315 × 2 / 1,42 = 4403 кг (4,4 т) грунта. При его насыпной плотности 1,9 т/м3 это составит: 4,4 / 1,9 = 2,3 м3.
Круг диаметром 3 м имеет площадь примерно в 7,1 м2. Объем конуса равен произведению площади его основания на одну треть высоты. Отсюда глубина конуса выноса грунта под соплом «Аполлона-11» оценивается в 3 × 4,4 / 7,1 = 1,9 м. Где эта яма на фотографиях? Покажите ее мне!
Я не претендую на то, чтобы этому методу расчета обучали студентов, но за 35 лет этих споров и восторженных воплей наших космических балбесов по поводу «великой победы американцев» мог найтись хоть один специалист, который выполнил бы подобный расчет вместо меня, редактора «Дуэли»?
А не посылал бы нас смотреть следы от взлета «Харриеров» или «Як-38». Такое впечатление, что наши «специалисты в области космоса» без помощи НАСА могут рассчитать только свою зарплату, включая кандидатские и докторские надбавки, да балабонить о том, смысла чего они не понимают.
Где пламя от двигателей?
Хиви НАСА. А вот то, что при взлете с Луны летели камни, вам показалось, а уж то, что камни эти были весом в десятки килограммов – явно приснилось.
При старте мотор взлетной ступени работает действительно на все свои 1590 кгс – на старте двигатели всегда работают на полную мощность, чтобы как можно эффективнее использовать топливо. Это раза в полтора больше, чем силя тяги посадочного двигателя в момент посадки. Но между посадкой и взлетом лунной кабины есть гораздо более существенная разница.
При посадке газовая струя двигателя ударяет непосредственно в лунную поверхность. А при взлете нижняя часть лунного модуля – посадочная ступень, – остается на Луне, и струя газа от двигателя взлетной ступени ударяет именно в нее, а не в грунт (рис. 103). Так что камням просто неоткуда взяться – посадочная ступень все-таки не из кирпича сложена. Что действительно летит во все стороны при старте с Луны – это всякие лоскутья и лохмотья, которые газовая струя взлетного двигателя, бьющая в упор в посадочную ступень, отрывает от ее теплоизоляции. Эти лохмотья хорошо видны на видеоролике, который снят через иллюминатор взлетной ступени «Аполлона-14» во время ее старта с Луны: history.nasa.gov/40thann/mpeg/ap14_ascent.mpg (2 Мбайта) (рис. 104).
Двигатель запущен, и через кадр проносится куча обрывков и лохмотьев (рис. 105).
Рис. 103
Рис. 104
Рис. 105
А вот не спеша пролетает особенно крупный лоскут.
На этом видеофрагменте также отчетливо видно, что стоящий совсем рядом с лунным модулем флаг при старте лунной кабины начинает сильно раскачиваться, но остается на месте. А газовая струя, способная поднять камни в полцентнера весом, наверняка унесла бы этот флаг очень и очень далеко.
Обратите также внимание на лунную поверхность. Таких потоков пыли, полностью скрывающих ее детали, какие были при посадке, при взлете не наблюдается.
– Ладно, но почему при прилунении вылетевшая из-под двигателя пыль не осела на поручнях и ступеньках лунного модуля?
– Это потому, что там нет воздуха. На Земле поднятая пыль, конечно, поднялась бы в воздух, и немалая ее часть осела бы на опустившемся модуле. А на Луне газовая струя, бившая в грунт, растекалась по лунной поверхности и уносила пыль в стороны. Эти струи пыли хорошо видны на кинокадрах.
Ю.И. МУХИН. Можете счесть меня занудой, но еще раз напомню: двигатель, по легенде, отключился только через 0,9 секунды после посадки, и все это время посадочные стойки и тарелки на них забрасывались реголитом и пылью. Где этот реголит и пыль на фотографиях рис. 14?
Хиви НАСА. А нас спрашивают:
– А почему не видно пламени от ракетных двигателей?
Вот эпизод (рис. 106) из фильма – посадка «Аполлона» на Луну. В иллюминаторе – приближающаяся лунная поверхность. И на ней – никаких отблесков пламени от работающего двигателя, даже в тени от лунного модуля.
Рис. 106
Вот телевизионные кадры старта «Аполлона-17» с Луны. Взлетная ступень вдруг начинает подниматься вверх, и опять – никакого пламени. Ее в самом деле, что ли, на веревке поднимают?
А вот опять фильм – вид из командного отсека на приближающийся лунный модуль на фоне Луны. Он вдруг начинает поворачиваться, потом останавливает вращение, тормозит при приближении к командному отсеку. И хоть бы язычок пламени из ясно видимых в кадре двигателей ориентации, с помощью которых якобы осуществляются все эти маневры! Сплошные комбинированные съемки все это!
– Вообще-то пламя бывает разное. Пламя свечи, например, намного ярче, чем пламя кухонной газовой плиты, хотя последнее гораздо сильнее, чем у свечи, – попробуйте как-нибудь вскипятить чайник на свечке и посмотрите, сколько на это потребуется времени. Все зависит от того, какое топливо сгорает.