Анаксимандр и рождение науки — страница 12 из 30

Анаксимандр: апейрон

Вернемся к Анаксимандру, который предшествовал концептуальной эволюции Анаксимена. Что же такое этот апейрон, из которого, по мнению Анаксимандра, состоит мир?

Этот вопрос породил множество споров, и мнения колеблются между двумя крайностями, обусловленными значениями греческого слова «апейрон»: первое – «без границ», «бесконечный», и второе – «нефиксированный», «нечеткий», «недифференцированный».

Еще раз подчеркну: я не хочу вступать в дискуссию о точном значении этого термина, поскольку считаю ее нерелевантной с научной точки зрения. Это все равно, что спрашивать, подразумевал ли Джордж Джонстон Стоуни, вводя термин «электрон» в 1894 г., «крупицу электричества», «новую частицу» или что-то еще. Неважно, почему он выбрал слово «электрон». Важно то, что, во-первых, он представил новую идею, во-вторых, какое место эта идея заняла в теоретической схеме, созданной Стоуни и его последователями, и, наконец, насколько эффективно она описывает мир. Если бы Стоуни дал этому новому объекту другое название, история не развернулась бы иначе. Действительно, в современной физике ближайшие родственники электронов называются кварками – этот термин ввел Мюррей Гелл-Манн. «Кварк» обозначает крик чайки, и Гелл-Манн выбрал это название, чтобы дать понять, что он культурный человек и читал «Поминки по Финнегану» Джеймса Джойса, где этот термин используется в строке «Три кварка для мистера Марка!». Единственная связь между этим словом и частицей в том, что существует три вида кварков.

Аналогичным образом, если бы Анаксимандр не назвал свой принцип бесконечным или нечетким, научная значимость его идеи была бы абсолютно идентичной.

В чем же, в итоге, смысл идеи, которую выдвинул Анаксимандр, введя понятие апейрона?

Существенной особенностью апейрона является то, что он не относится к числу субстанций, с которыми мы имеем дело в повседневном опыте. Симпликий пишет: «Анаксимандр… началом[34] и элементом сущих [вещей] полагал бесконечное (to apeiron[35], и далее следует его комментарий.

[Анаксимандр] первым ввел это имя начала[36]. Этим [началом] он считает не воду и не какой-нибудь другой из так называемых элементов, но некую иную бесконечную природу, из которой рождаются небосводы [миры] и находящиеся в них космосы… как он сам говорит об этом довольно поэтическими словами. Ясно, что, подметив взаимопревращение четырех элементов, он не счел ни один из них достойным того, чтобы принять его за субстрат [остальных], но [признал субстратом] нечто иное, отличное от них[37].

Таким образом, Анаксимандр утверждает, что все субстанции, доступные нашему опыту, могут быть поняты в терминах чего-то естественного, но в то же время не относящегося ни к одной из субстанций, с которыми мы взаимодействуем в повседневной жизни. Фундаментальная идея заключается в том, что для объяснения сложности мира полезно постулировать или представить существование чего-то, что не является частью мира, данного нам в непосредственном опыте, но может выступать в качестве объединяющего природного элемента, с помощью которого можно дать объяснение всем вещам.

Итак, с одной стороны, предположения милетцев Фалеса, Анаксимандра и Анаксимена освобождают природу от понимания ее как проявления божественной, сверхъестественной реальности. Можно сказать, что введение самого понятия природы как области исследования – это принципиально важный вклад милетской школы в развитие научного знания. Термин, используемый для этого значения слова «природа», φυσις (фюсис), вероятно, возник в Милете. С другой стороны, сама идея изучения природы основана на признании того, что природа не раскрывается во всей своей полноте в непосредственном опыте. Напротив, чтобы исследовать ее, мы должны проникнуть к ее истокам, к ее структуре. Истина достижима и является неотъемлемой частью самой природы, но в то же время истина скрыта. С помощью таких инструментов, как наблюдение и разум, ее можно познать. Мышление должно быть готово представить себе существование природных сущностей, помимо тех, которые мы воспринимаем непосредственно.

Именно по этому пути и пошла теоретическая наука в последующие века и вплоть до наших дней. Постулируя существование апейрона, Анаксимандр прокладывает путь, по которому наука будет идти снова и снова с огромным успехом: наука будет представлять себе сущности, которые не являются непосредственно видимыми или воспринимаемыми, но которые позволяют нам объяснять природные явления.

Как атомы древнегреческих атомистов Демокрита и Левкиппа, так и их родственники из девятнадцатого века – атомы Джона Дальтона – являются прямыми потомками апейрона Анаксимандра. Это природные объекты (в атомах нет ничего особенно божественного), которые недоступны нашему непосредственному восприятию, но посредством которых мы понимаем строение материи.

Другой пример – огромный вклад Майкла Фарадея в развитие современной науки. В середине девятнадцатого века не существовало единого понимания электрических и магнитных явлений. В результате глубоких экспериментальных исследований Фарадей пришел к идее новой сущности – поля.

Поле – это сущность, предположительно заполняющая пространство, подобно необъятной паутине, которая раскинулась повсюду, сплетенная из незаметных линий, известных теперь как силовые линии Фарадея. Фарадей выделил два поля – электрическое и магнитное (впоследствии будут описаны и другие). Они влияют друг на друга и ответственны за электрические и магнитные силы. В удивительном пассаже из своей прекрасной книги Фарадей задается вопросом, реальны ли сами эти поля, пронизывающие физическое пространство. Он сомневается, но в конце концов приходит к выводу, что они реальны. Ньютоновское видение Вселенной – как пустого пространства, которое пересекают частицы, оказывающие друг на друга воздействие на расстоянии, – рухнуло. Новая сущность, поле, заняла свое место в мире.

Спустя несколько лет Джеймс Клерк Максвелл преобразовал провидческие идеи Фарадея в систему уравнений, описывающих эти поля. Он выяснил, что свет – это не что иное, как быстрая рябь на этой паутине, и что эта рябь на больших длинах волн может переносить сигналы. Герц воспроизвел их в лаборатории, а Маркони изготовил первый радиоприемник. Современные телекоммуникации основаны на этой новой картине мира, ключевым компонентом которой являются ненаблюдаемые поля.

Атомы, электрические и магнитные поля Фарадея и Максвелла, искривленное пространство-время Эйнштейна, гипотеза флогистона-теплорода, эфир как у Аристотеля, так и у Лоренца, кварки Гелл-Манна и виртуальные частицы Фейнмана, волновая функция квантовой механики Шрёдингера, и квантовые поля, составляющие основу описания мира в современной фундаментальной физике, – все это «теоретические сущности», которые не могут быть восприняты непосредственно органами чувств, но постулируются наукой для когерентного (встраивающегося в общую систему научного знания) объяснения сложности явлений. Они играют точно такую же роль и выполняют те же функции, которые Анаксимандр отводил апейрону. Они являются потомками воззрений Анаксимандра.

Теория апейрона – рудимент, и, конечно, не может сравниться с проработанной математической теорией, которую Максвелл создал для электрического и магнитного полей, или Фейнман – для квантовой теории поля. Но когда ваш телевизор не работает, а мастер по ремонту антенн объясняет это тем, что электромагнитные волны плохо ловятся, так как им мешает холм, он использует эти волны как «теоретические сущности» для описания явлений. Он прибегает к концептуальному суждению, которое имеет конкретное историческое происхождение – апейрон Анаксимандра.

Идея закона природы: Анаксимандр, Пифагор и Платон

Обратимся еще раз к пересказу Симпликием единственного дошедшего до нас текста Анаксимандра:

Все вещи возникают друг из друга и исчезают друг в друге Согласно необходимости; Они вершат друг над другом справедливость и воздают за несправедливость В соответствии с порядком Времени.

В этих строках явно выражена мысль о том, что становление мира происходит не бессистемно, а по необходимости, то есть по каким-то законам. Также в них явно содержится представление о том, что выражаются эти законы «в соответствии с порядком Времени». Таким образом, здесь четко обозначена идея о том, что существуют законы природы и что эти законы управляют развитием вещей во времени.

Форма этих законов не уточняется. Однако можно провести расплывчатую аналогию с правосудием или моральным законом. Так или иначе, насколько нам известно, ни один из этих законов не был сформулирован Анаксимандром в эксплицитном виде.

Уже в следующем поколении другая крупная фигура в истории науки придет к пониманию того, какую форму должны иметь эти законы – точнее, на каком языке они должны быть написаны. Эта фигура – Пифагор. Его точка зрения, совершенно новая в сравнении с милетской школой, состояла в том, что законы Вселенной написаны на языке математики. Это добавило новый ключевой элемент к мировоззрению Анаксимандра и придало точную форму понятию «закон», которое у Анаксимандра было еще нечетким.

Согласно общепринятым источникам, Пифагор родился на Самосе, недалеко от Милета, в 569 г. до н. э. Таким образом, ему было двадцать четыре года в 545 году, когда умер Анаксимандр. Перу Ямвлиха Халкидского, философа-неоплатоника третьего века н. э., принадлежит одно из самых подробных античных сочинений о философе – «О Пифагоровой жизни». В нем он сообщает, что в восемнадцать или двадцать лет Пифагор отправился в Милет, чтобы встретиться с Фалесом и Анаксимандром. Возможно, Ямвлих не вполне заслуживает доверия, но трудно поверить, что в тесном мире древнегреческой аристократии – крошечной вселенной, в которой, казалось, каждый знал каждого – Пифагор и Анаксимандр никогда не встречались. Они были людьми с одинаково сильной жаждой познания, жившими в одно время и в одном регионе. Представляется маловероятным, чтобы молодой Пифагор не заинтересовался идеями своего прославленного соседа перед тем, как отправиться в далекое путешествие, которое привело его в Кротоне (Италия), где он основал свою школу. Ввиду сходства их космологических интересов и, прежде всего