Анализы. Полный медицинский справочник. Ключевые лабораторные исследования в одной книге — страница 23 из 71

Магний – второй по концентрации после калия внутриклеточный катион, входит в состав ряда ферментов. Наиболее необходим для функционирования сердца, нервной и мышечной ткани. Он содержится в мышечной и костной ткани. Активность многих ферментов зависит от магния.

Нормальная концентрация: в плазме – 0,7–1,2 ммоль/л, в моче – 3–5 ммоль/сутки.

Общее содержание в организме – около 1640 ммоль, из них:

1) в скелете – около 50%;

2) в мышцах – около 30%.

Суточная потребность – 300–400 мг.

Снижение концентрации магния обнаруживается одновременно в крови и моче при больших потерях воды (продолжительные поносы, полиурия при заболеваниях почек, прием мочегонных средств), при нарушениях всасывания в кишечнике, хроническом алкоголизме, в период беременности. Недостаток магния проявляется нарушениями сердечной деятельности, а при значительном дефиците – судорогами.

Избыточное содержание магния отмечается при хронической почечной недостаточности, гипофункции щитовидной железы и вызывает замедление проведения нервного импульса в проводящей системе сердца, блокаду нервно-мышечной передачи.

Методы определения магния во многом близки методам определения кальция, так как и в том и в другом случае на первом месте по точности стоит атомная абсорбция, на втором – химические методы, основанные на образовании окрашенных комплексных соединений.

Хотя магний, подобно кальцию, только частично находится в плазме крови в ионизированном состоянии, а частично связан с белками и низкомолекулярными комплексообразователями – лимонной и фосфорной кислотами, клиническое значение имеет только определение общего магния.

Известно много веществ, образующих окрашенные или флюоресцирующие комплексы с магнием, аналитическая пригодность их определяется чувствительностью и способностью избирательно реагировать с магнием в присутствии кальция. Однако абсолютной избирательности достичь очень трудно, поэтому приходится использовать составные калибровочные растворы, в которых присутствуют несколько веществ.

Давно известен не очень чувствительный метод определения с титановым желтым, который достаточно специфичен, но требует предварительной депротеинизации, благодаря чему может быть использован для определения магния в эритроцитах. Значительно чувствительнее метод с магоном (ксилидиновым синим II) или его сульфопроизводным (ксилидиновым синим I). В кислой среде это вещество существует в виде окрашенного в красный цвет недиссоциированного соединения, в слабощелочной – в виде однозарядного иона синего цвета, а в сильнощелочной – в виде двухзарядного иона красного цвета. С ионом магния образуют устойчивый окрашенный в красный цвет комплекс два однозарядных иона.

Определение магния по цветной реакции с титановым желтым

Принцип метода

Магний в щелочной среде образует комплекс красного цвета с титановым желтым, присутствие гидроксиламина стабилизирует окраску. При анализе сыворотки или эритроцитов белки осаждают вольфраматом натрия, моча предварительно разводится до нужной концентрации.

Необходимые реактивы

1. 0,075%-ный раствор титанового желтого: 18,7 мг вещества растворяют в 25 мл воды, хранят в холодильнике в темной склянке (реактив очень светочувствителен, годен не более 10 дней).

2. 2%-ный раствор гидрохлорида гидроксиламина: 2 г гидроксиламина гидрохлорида растворяют в 100 мл воды.

3. 0,1%-ный раствор метилового красного в 95%-ном этиловом спирте (индикатор с зоной перехода рН 4,4–6,2).

4. 0,2 н NaOH.

5. 1,5 н NaOH.

6. 10%-ный раствор вольфрамовокислого натрия: 10 г вольфрамата натрия (Na2WO4) растворяют в воде, объем доводят до 100 мл.

7. 0,67 н серная кислота.

8. Калибровочный раствор магния сульфата 1 ммоль/л: 246,5 мг сульфата магния (MgSO4 × 7H2O) растворяют в воде, объем доводят в мерной колбе до 1 л.

Ход исследования

К 2 мл воды добавляют 1 мл исследуемой сыворотки и 1 мл 10%-ного вольфрамата натрия, затем 1 мл 0,67 н серной кислоты. Перемешивают стеклянной палочкой, а затем через 10–15 мин центрифугируют или фильтруют. В градуированную пробирку или мерный цилиндр с отметкой 10 мл отмеривают 2,5 мл безбелкового фильтрата, добавляют каплю индикатора метилового красного и 0,2 н NaOH до установления желтой окраски. После этого прибавляют 1 мл 2%-ного гидрохлорида гидроксиламина, 1 мл 0,075%-ного титанового желтого и 2 мл 1,5 н NaOH и доводят объем водой до 10 мл. Фотометрируют в кювете с длиной оптического пути 1 см при длине волны 500–560 нм против холостого опыта, в котором вместо сыворотки крови берут 1 мл воды.

Для построения калибровочного графика в серию пробирок вносят от 0,2 до 1 мл калибровочного раствора 1 ммоль/л, доводят водой до объема 6 мл, прибавляют по 1 мл 2%-ного гидрохлорида гидроксиламина, 0,075%-ного титанового желтого и 2 мл 1,5 н NaOH. Окраска раствора, в который добавлено 0,2 мл калибровочного раствора, соответствует содержанию магния в плазме 0,4 ммоль/л, раствора, в который добавлено 0,5 мл, – концентрации 1 ммоль/л и т. д.

При определении содержания магния в эритроцитах 0,5 мл эритроцитарной взвеси, полученной так же, как и при определении в клетках калия и натрия, вносят в 2,5 мл воды. Через несколько минут, когда взвесь просветлеет (станет лаковой), что свидетельствует о завершении гемолиза, добавляют вольфрамат натрия, серную кислоту и так далее аналогично определению в плазме. Метод пригоден также для определения магния в моче. В этом случае ее разводят водой в 10 или 20 раз (так как концентрация может сильно колебаться), к 0,5 мл приливают 5,5 мл воды, по 1 мл растворов гидрохлорида гидроксиламина и 0,075%-ного титанового желтого, а также 2 мл 1,5 н NaOH и фотометрируют.

Определение магния по цветной реакции с магоном

Принцип метода

Магний дает с магоном (ксилидиловым синим II) яркое окрашивание, белки сыворотки не препятствуют его развитию. В связи с тем что на интенсивности окраски сказывается присутствие других катионов, используют комплексный калибровочный раствор.

Необходимые реактивы

1. Раствор магона, содержащий 0,28 ммоль/л: 115,4 мг магона при нагревании растворяют в 50 мл диметилформамида, объем доводят до 1 л 96%-ным этиловым спиртом.

2. 0,02 М боратный буфер рН 9,5: примерно в 800 мл воды растворяют 7,63 г буры (Na2B4O7 × 10Н2О), прибавляют 79 мл 0,1 н NaOH и проверяют рН, добавляют столько щелочи, сколько необходимо, чтобы рН был 9,5, после чего водой доводят объем до 1 л.

3. Рабочий раствор магона – в день определения смешивают равные части раствора магона и боратного буфера; реактив нестоек, годен в течение одного рабочего дня.

4. Комплексный калибровочный раствор: 200 мг металлического магния в виде стружки промывают разбавленной НСl, водой, спиртом и эфиром, высушивают сначала в токе азота, затем под вакуумом и растворяют в 15 мл концентрированной НСl, добавляют около 200 мл воды и 2,5 г кальция карбоната (СаСО3), 2,86 г калия хлорида (КСl) и 65,4 г натрия хлорида (NaCl); после растворения всех ингредиентов объем доводят водой до 1 л. Получается раствор, содержащий 200 мг магния в 1 л, перед употреблением его разводят водой в 10 раз, получается рабочий калибровочный раствор, содержащий 0,823 ммоль/л магния (2 мг%).

Ход исследования

К 4 мл рабочего раствора магона прибавляют 30 мкл исследуемой сыворотки или спинномозговой жидкости, перемешивают и фотометрируют в кювете с длиной оптического пути 1 см при длине волны 505 нм против холостого опыта, в котором вместо сыворотки берут воду. Одновременно ставят калибровочный опыт, в котором вместо сыворотки берут 30 мкл рабочего калибровочного раствора, содержащего 0,823 ммоль/л магния. Расчет ведут по правилу пропорций.

Хлориды

Хлориды поступают в организм в виде солей натрия, кальция, магния, которые при растворении диссоциируют на катионы и анионы хлора. Ионизированный хлор играет большую роль в поддержании кислотно-щелочного равновесия и баланса воды в организме.

Нормальная концентрация в крови:

1) новорожденные до 30 дней – 98–113 ммоль/л;

2) взрослые – 97–108 ммоль/л, в моче – 150–250 ммоль/сутки;

3) взрослые старше 90 лет – 98–111 ммоль/л.

У здоровых людей, несмотря на избыточное или недостаточное поступление хлористого натрия (поваренной соли), в крови сохраняется нормальная концентрация ионов хлора благодаря регулированию их выведения с мочой.

Клиническое значение определения хлоридов такое же, как и натрия.

Увеличение концентрации хлоридов в крови – признак обезвоживания – может возникать при недостаточном поступлении жидкости, нарушении мочеотделения при заболеваниях почек или закупорке мочеточников, при несахарном диабете, респираторном алкалозе, повышенной функции коры надпочечников, травмах головы, сопровождающихся повреждением гипоталамуса.

Снижение концентрации хлоридов в крови возникает при избыточном потоотделении, рвоте, респираторном и метаболическом ацидозе, применении диуретиков, появлении отеков, истощении запасов натрия при потерях солей из ткани мозга после травмы головы, острой порфирии, синдроме неадекватной секреции антидиуретического гормона.

Повышенное выведение с мочой отмечается при недостаточности коры надпочечников, истощении запасов натрия, хроническом нефрите; уменьшенное выведение – при развитии отеков, голодании, рвоте, усиленном потоотделении.

Концентрация хлоридов резко возрастает в поте и слюне при муковисцидозе.

Хлор, как и натрий, – внеклеточный элемент, поэтому их определение имеет аналогичное клиническое значение с той разницей, что физиологические механизмы поддерживают концентрацию натрия в значительно более узких пределах. Происходит это потому, что натрий – основной катион внеклеточных жидкостей, на его долю приходится 92–93% всех положительных зарядов, в то время как главных анионов три: хлор, бикарбонат и органические кислоты, причем на долю хлора приходится лишь 2/3 их общего количества. Хотя сумма анионов так же постоянна, как и сумма катионов, но колебания хлора относительно больше, чем натрия, так как уравновешиваются изменениями других анионов.

Определение натрия в биологических жидкостях на пламенном фотометре просто и надежно; для хлора аналогичного метода нет, поэтому натрий определяют в биохимических лабораториях значительно чаще, чем хлор. Однако в некоторых случаях, если речь идет об анализе отдельных проб в небольших лабораториях, особенно при исследовании мочи, определение хлора предпочтительнее, так как не требует почти никакого оборудования. Одновременное определение и хлора, и натрия вместе с другими неорганическими ионами плазмы иногда используют для того, чтобы вычислить содержание органических кислот, которое соответствует разности между суммами неорганических катионов и анионов.

Хлор чаще всего определяют титрованием, так как, подобно другим галогенам, Сl образует плохо растворимые соли с ионами серебра и ртути. Основная методическая проблема – как установить конец титрования, т. е. появление избытка серебра или ртути. Для этого используются электрохимические методы или обратное титрование, когда ионы хлора осаждаются ионами серебра, а их избыток затем оттитровывается роданид-ионами, используя в качестве индикатора конца титрования соли железа. Однако практичнее всего прямой метод, при котором к исследуемому раствору добавляются соли ртути, а в осадок выпадает нерастворимая каломель. Эти методы возможны благодаря эффективным индикаторам на ртуть – органическим веществам, ртутные соли которых окрашены. Когда весь хлор удален из раствора, новые порции титранта окрашивают его. На этом основан унифицированный метод, в котором в качестве индикатора на ртуть используется дифенилкарбазон.

Самые распространенные методы определения хлора – аппаратурные, в которых используется кулонометрическое титрование. Оно заключается в том, что измеряется количество электричества, необходимое для того, чтобы удалить весь хлор из раствора. Анализ сводится к тому, что небольшое количество исследуемой жидкости (порядка 0,01–0,02 мл) – плазмы, сыворотки, мочи или пота – разводится буферным раствором, содержащим соли азотной кислоты. В раствор погружены 3 электрода: рабочий, индикаторный и индифферентный. К рабочему (серебряному) электроду прилагается положительный электрический потенциал, в результате чего через раствор течет ток, количество которого измеряется специальной электронной схемой – кулонометром. Атомы серебра на рабочем электроде превращаются в ионы Ag+, которые сразу же реагируют с ионами Сl, в результате чего выпадает нерастворимое хлорное серебро. Когда весь хлор удален из раствора, концентрация в нем резко возрастает; это улавливается индикаторным электродом, сигнал с которого останавливает титрование. Содержание хлора в пробе вычисляется по формуле Фарадея, которая связывает количества электрического тока и выделившегося серебра, потребовавшегося, чтобы связать весь хлор.

Унифицированный меркуриметрический метод определения хлора

Принцип метода

Исследуемая биологическая жидкость титруется раствором азотнокислой ртути, образующаяся каломель выпадает в осадок. Когда весь хлор связан, избыток ионов ртути образует с индикатором дифенилкарбазоном темное, сине-лиловое окрашивание, что служит признаком конца титрования.

Необходимые реактивы

1. Ртуть азотнокислая, раствор 6 ммоль/л: 2 г Hg(NO3)2 × 0,5Н2О растворяют в 200 мл воды, добавляют 20 мл 2 н азотной кислоты и доводят водой до 1 л.

2. Дифенилкарбазон, спиртовой раствор: 100 мг дифенилкарбазона растворяют в 100 мл 96%-ного этилового спирта, хранят в посуде из темного стекла в холодильнике (стоек в течение месяца).

3. Азотная кислота, 2 н: 14 мл концентрированной азотной кислоты (плотность 1,4) разводят в 100 мл воды.

4. Калибровочный раствор, 10 ммоль/л: хлорид натрия (поваренная соль) высушивают до постоянной массы при температуре 120 °С, 584 мг препарата растворяют в воде и доводят объем до 1 мл.

Ход исследования

Сначала устанавливают величину фактора раствора для титрования (титранта). Для этого в маленький стаканчик или колбочку вносят 2 мл калибровочного раствора и 4 капли (0,2 мл) раствора фенилкарбазона, постоянно перемешивая, титруют раствором азотнокислой ртути до появления темного окрашивания. Фактор титранта вычисляют, разделив 20 (количество микромолей хлорид-ионов в калибровочной пробе) на число миллилитров, пошедших на титрование. Фактор указывает, какому количеству микромолей хлорид-ионов соответствует 1 мл титранта.

При исследовании опытной пробы поступают аналогично: в маленький стаканчик или колбочку наливают 1,8 мл воды и вносят 0,2 мл исследуемой биологической жидкости, добавляют 4 капли (0,2 мл) раствора дифенилкарбазона и титруют раствором азотнокислой ртути при постоянном перемешивании до появления темной окраски. Удобнее всего перемешивать магнитной мешалкой. На титрование сыворотки должно пойти примерно 3 мл титранта.

Раствор азотнокислой ртути можно приготовить из красной окиси ртути. Для этого 1,3 г HgO растворяют в 11 мл концентрированной азотной кислоты и доводят объем водой до 1 л. Раствор дифенилкарбазона должен быть красно-оранжевого цвета; если окраска становится желтой или вишнево-красной – реактив непригоден.

Микроэлементы