[37]. Поэтому Бет продолжила использовать зрительную систему животных, чтобы лучше разобраться в действии микроглиальных клеток.
Она предположила, что если микроглия действительно обволакивает и разрушает синапсы, то можно увидеть их остатки внутри самой микроглии.
– Это был большой вопрос, – говорит Бет. – Можем ли мы найти фрагменты синапсов внутри микроглии? Моя коллега Дори нашла остроумный способ доказать, так ли это на самом деле.
Дори Шафер, которая теперь была еще и старшим преподавателем нейробиологии в Массачусетском медицинском колледже и в Институте нейропсихиатрических исследований Брудника, объясняет их эксперимент, который теперь считается основополагающим исследованием в области неврологии.
Для наглядного изучения взаимодействия микроглии с синапсами Дори вводила краситель в глаза мышей[38]. Затем этот краситель выводился из нейронов глаза по нервным волокнам глубоко в мозг. Таким образом, по словам Дори, синапсы были подсвечены ярко-красным флуоресцентным цветом, а микроглия – ярко-зеленым. Это позволяло отчетливо видеть их.
Весь процесс поиска способа для четкого рассмотрения взаимодействия синапсов и микроглии внутри мозга занял около года.
– Однажды в выходной день я находилась одна в лаборатории и делала снимки микроглии и синапсов, – вспоминает Дори. – Я уже миллион раз смотрела в микроскоп. Потом вдруг увидела красные структуры – синапсы, – сиявшие как маленькие флуоресцентные точки, и эти красные точки были поглощены зеленой микроглией.
Дори была потрясена:
– Я только и думала: мы оказались правы! Микроглия пожирает синапсы! Я собственными глазами увидела подтверждение.
Она не сразу рассказала Бет о своем открытии.
– Мне хотелось быть абсолютно уверенной. Поэтому в тот же день я повторила эксперимент еще несколько раз, но каждый раз видела одно и то же: синапсы внутри микроглии. Она поглощала их и разрывала на куски.
Бет вспоминает, как Дори в понедельник прибежала в ее кабинет с фотоснимками в руках.
– Они там! – воскликнула она. – Синапсы действительно находятся внутри микроглии. Мы можем это видеть!
– Это был незабываемый момент, – вспоминает Бет. – Клетки микроглии действительно были крошечными Пекменами внутри мозга, которые пожирали синапсы! Мы находились на краю чего-то великого и удивительного, чего-то по-настоящему нового и чрезвычайно важного для понимания роли микроглии в развитии расстройств мозга.
Бет и Дори засучили рукава и принялись за работу.
– Мы обе были полны энтузиазма, но это оказалась действительно трудная и напряженная работа, – вспоминает Бет. Тогда она была беременна своей дочерью Зоей и имела еще одного малыша дома. – Мы с Дори понимали, что должны вкалывать изо всех сил. У нас хватало адреналина, но мы осознавали, что работа должна быть методичной, поэтому не жалели времени на контрольные эксперименты и анализ данных. Мы хотели сделать все правильно и опубликовать результаты до того, как кто-нибудь другой сделает это.
Исследование оказалось нелегкой задачей. Следующие дни и недели напомнили Бет о начале ее научной карьеры в лаборатории Дуга Филдса. Когда она отрывалась от работы и смотрела на часы, время часто близилось к полуночи.
– Иногда просто не имело смысла уходить домой, – говорит она.
Однако кое-что изменилось с тех пор, как Бет выполняла техническую работу в лаборатории Филдса. Ей больше не приходилось спать на куче одежды под столом для совещаний.
– Дори подарила мне надувной матрас, – со смехом вспоминает она. – Я пристраивала его под рабочим столом, и, когда было уже совсем поздно, просто падала на него.
– Роб помогал мне во всем, где возможно, – продолжает она. – Он понимал важность того, чем мы занимались. Он объяснял Рили, что я иногда не возвращалась домой по вечерам, потому, что мы занимаемся работой, которая должна помочь множеству больных людей.
В 2011 году Бет и Дори отправили статью с описанием своих открытий на экспертное рецензирование и публикацию. Бет недавно родила свою вторую дочь Зои, и теперь у нее было двое маленьких детей. А Дори вышла замуж.
Это оказался переломный год. В 2012 году их фундаментальную статью опубликовали в журнале «Нейрон». Это было первое научное исследование, где предлагались доказательства[39], что комплементы помечали синапсы сигналом «съешь меня», а микроглиальные клетки «выпалывали» и поглощали их. Они безоговорочно доказали, что микроглия может поглощать и преобразовывать здоровые синапсы.
Не удивительно, что научный мир взорвался от такой новости. Впоследствии их статью называли самой значительной в этом журнале за 2012 год.
Тем временем исследователи из европейской лаборатории молекулярной биологии в Италии[40] показали, что микроглия может проявлять особую активность в гиппокампе, имеющем важнейшее значение для памяти и настроения. Обволакивая и удаляя здоровые синапсы в нем, микроглия приводила к утрате нейронных связей в той части мозга, которая, по общему убеждению, тесно связана с депрессией, тревожными расстройствами, аутизмом, обсессивно-компульсивным расстройством и болезнью Альцгеймера. Как показывала позитронно-эмиссионная томография (ПЭТ), при этих заболеваниях наблюдалась заметная дистрофия гиппокампа.
Эти открытия разрешили тайну многих десятилетий. При многих психоневрологических и нейродегенеративных заболеваниях головного мозга здоровые синапсы исчезали; нейроны массово погибали. Но никто не мог понять почему.
Внезапно общая картина стала совершенно ясной.
Микроглия старалась защищать мозг и сдледить за его здоровьем, как это делают белые кровяные клетки в организме. Однако когда микроглиальные клетки замечали какую-то неполадку, – избыток стрессовых гормонов, проникнувший вирус, токсины, аллергены или патогены, они часто проявляли чрезмерную активность и устраняли все синапсы, находившиеся рядом с поврежденным участком.
Это понимание изменило все.
В 2015 году Бет Стивен получила «грант для гениев» от фонда Макартуров за открытие роли микроглиальных клеток в сокращении синапсов на этапе раннего развития и при расстройствах мозговой функции.
Одна многоликая клетка
До сих пор мы были сосредоточены в основном на «темной стороне» микроглии.
Однако у этих крошечных клеток есть и светлая. Когда мозг находится в состоянии гомеостаза (иными словами, когда микроглия не имеет оснований для излишней агрессивности), эти клетки ведут себя совершенно иным, позитивным, образом. В здоровом мозге микроглия вырабатывает питательные вещества для стимуляции роста нейронов и образования новых синапсов там, где это необходимо. Они даже синтезируют нейропротекторы для «ремонта» неисправных нейронов[41].
В сущности, микроглия непосредственно помогает нейронам расти и образовывать новые соединения[42] с другими, укрепляя их связность и общую архитектуру мозга.
Микроглия, вместе с другими видами глиальных клеток, поддерживает выработку миелина, защищающего нейронные соединения и ускоряющего прохождение биоэлектрических сигналов через синапсы. Одной из самых активных областей, где она выполняет такую ремонтно-восстановительную работу, является гиппокамп.
– У микроглиальных клеток есть множество полезных функций, если они правильно сбалансированы, – подчеркивает Бет. – Когда они находятся в состоянии гомеостаза, то испускают сигналы, способствующие образованию полезных белков и химических соединений, защищающих мозг. Они действительно стараются остановить процесс потери синапсов.
Но в тот момент, когда микроглиальные клетки воспринимают крошечные или значительные перемены к худшему, они перестают вырабатывать полезные и защитные соединения и начинают выделять нейровоспалительные вещества, которые причиняют вред мозгу. Помимо разрушения синапсов, это может привести к другому опасному результату: к блуждающему воспалению.
– Если что-то резко изменяется, микроглия может перейти в провоспалительное состояние и начать вырабатывать массу цитокинов[43], что делает ее главной причиной воспалительных процессов в мозге, – объясняет Бет.
К примеру, при травматическом повреждении мозга микроглия «сходит с ума».
– Эти клетки начинают посылать воспалительные сигналы, которые изначально помогали защищать мозг, но теперь утратили свою функцию, и активируют другие глиальные клетки. Например, астроциты, которые начинают выделять токсины и причинять вред нейронам, – говорит Бет.
В медицинском колледже при Мэрилендском университете профессор неврологии Маргарет Маккарти, в отличие от Бет Стивенс, сосредоточена на изучении микроглии в мозге гораздо более молодых животных. Она обнаружила, что микроглия может быть запрограммирована ранним жизненным опытом, например, влиянием гормонов, инфекции или воспаления. Таким образом, этот опыт воздействует на ее реакции в последующей жизни даже в случае травм, стресса или заражения.
Теперь ученые предполагают, что когда микроглия начинает действовать в мозге[44], это может приводить к изменению генов, контролирующих ее поведение в долгосрочной перспективе, и перепрограммировать их на состояние повышенной бдительности, а также делать их чувствительнее к чрезмерным реакциям в будущем.
В режиме перевозбуждения микроглия не прекращает уничтожать нейронные связи после того, как угроза миновала. Клетки продолжают выделять воспалительные вещества и разрушать синапсы даже после исчезновения патогенов или стрессовых факторов. Нейронное воспаление становится самоподдерживающимся, неконтролируемым процессом. Оно может приводить к изменениям мозга даже через годы после его начала. Нечто, повлиявшее на развитие микроглии на раннем жизненном этапе, может проявиться как хроническая тревога, депрессия, расстройство поведения или шизофрения в подростковом возрасте, либо как болезнь Альцгеймера в старости.