Античная наука — страница 17 из 40

Большую популярность в V в. до н. э. приобрели три геометрические задачи, которые оказались неразрешимы средствами геометрии циркуля и линейки: 1) удвоение куба; 2) трисекция угла; 3) квадратура круга. Задачей об удвоение куба, получившей наименование «делосской задачи», занимались крупнейшие математики того времени — Гиппократ Хиосский и Архит Тарептский; в дальнейшем она явилась толчком к изучению конических сечений. Для решения задачи трисекции угла известный философ-софист Гиппий из Элиды изобрел кривую, впоследствии названную «квадратрисой». Третья задача — квадратура крута — была настолько популярна, что упоминание о ней содержится даже в «Птицах» Аристофана. По преданию, ею занимался в афинской тюрьме Анаксагор. Особый интерес в связи с этой задачей представляют рассуждения софиста Антифона, трактовавшего круг как многоугольник с очень большим числом сторон.

Подводя итоги развитию математики в рассматриваемый• период, мы не можем не поражаться тому гигантскому скачку, который был сделан этой наукой за какие-нибудь полтора столетия. В конце VI в. до н. э. основные математические понятия еще оставались объектом эзотерических спекуляций в пифагорейской школе, а о том, велись ли какие-либо исследования по математике, вне рамок этой школы, мы не имеем никаких сведений. К началу IV в. до н. э. превращается строгую и самостоятельную дисциплину; отвечающую всем критериям подлинной научности. При этом следует подчеркнуть два обстоятельства, сопутствовавших этому прогрессу.

Первое. Примерно в середине V в. до н. э. занятия математикой перестают быть прерогативой одних лишь пифагорейцев, становясь предметом профессиональной деятельности ученых, не примыкавших ни к какому философскому направлению. Бели Феодора из Кирены и Архита из Тарента еще называют пифагорейцами, то Гиппократ Хиосский был, по-видимому, уже чистым математиком-профессионалом. С другой стороны, теоретическая математика начинает привлекать внимание философов, не имеющих отношения к пифагорейской школе; об этом говорят сообщения о занятиях математикой Анаксагора, Гиппия, Антифона и о математических сочинениях Демокрита. Математика становится особой, выделенной наукой, наукой по преимуществу, и в качестве таковой она вскоре начнет рассматриваться как образец для всех прочих наук.

Вторым колоссальной важности обстоятельством следует считать создание дедуктивного математического метода. У нас нет возможности проследить историю возникновения этого метода. Был ли он выработан еще ранними пифагорейцами? Или, как считают некоторые, его рождение было стимулировано логическими рассуждениями Зенона? Или же, наконец, он оформился лишь в процессе творческой деятельности великих математиков конца V в. до н. э.— Гиппократа и Архита? Мы не знаем; нам известно только то, что в книге Гиппократа по геометрии весь материал излагался уже строго дедуктивно — путем логического вывода следствий из небольшого числа исходных положений. Таким образом, мы не сделаем, по-видимому, большой ошибки, приурочив рождение математической науки к моменту появления этой книги.

Астрономия, В отличие от математики греческая астрономия V в. до н. э. не может похвалиться столь же большими, успехами. Прежде всего обращает внимание скудость астрономических знаний у большинства философов-досократиков (вплоть до Демокрита). Их космологические спекуляции не обосновывались ни наблюдениями, ни расчетами; о планетах у них были еще очень смутные представления; даже объяснение солнечных и лунных затмений, данное Анаксагором, было лишь гениальной догадкой, не вытекавшей из космологических концепций самого клазоменца.

И здесь, согласно античным источникам, основные достижения принадлежат пифагорейской школе. Имеются основания предполагать, что гипотеза о шарообразности Земли была сформулирована впервые пифагорейцами (и уже от них заимствована Парменидом). Возможно, не без восточных влияний пифагорейцы научились различать пять планет, и начали наблюдать за их перемещениями. Имеется сообщение, что Алкмеон, который по своим научным воззрениям был близок к пифагорейцам, говорил о движении планет с запада на восток, противоположном движению неподвижных звезд. В дальнейшем в пифагорейской школе оформилась классическая модель космоса, в которой небесные светила располагались на семи кругах, или сферах, в следующем порядке (по мере удаления от Земли): Луна. Солнце. Меркурий. Венера Марс, Юпитер и Сатурн[1]. Расстояния между этими сферами уподоблялись пифагорейцами интервалам музыкальной гаммы, причем они предполагали, что при своем вращении сферы издают соответствующие тона, в совокупности образующие «небесную» гармонию, или музыку сфер, которая не воспринимается нами, потому что наши уши к ней привыкли.

О космологической системе пифагорейцев в том виде, в каком она сложилась к первой половине IV в. до н. э., можно составить представление по «Тимею» Платона. Однако к модели космоса, изложенной в «Тимее», пифагорейская наука пришла, по-видимому, не прямым путем. Наиболее интересное уклонение представляла собой система Филолая из Тарента — пифагорейца, жившего в конце V в. до н. э. Филолай отказался от традиционного представления о центральном положении Земли и поместил в центр мира огненный «очаг» (Гестию), вокруг которого движутся в порядке удаления от него — невидимая для нас «Противоземля», затем Земля, Луна, Солнце, пять планет и внешняя звездная сфера (рис. 3). Солнце, по Филолаю есть прозрачный шар, заимствующий свои свет и тепло, во-первых, от центрального «очага», а во-вторых, от огня, расположенного за пределами внешней сферы. Введение Противоземли было нужно Филолаю предположительно для того, чтобы сделать число небесных кругов равным десяти. Возможно, впрочем, что у него были и другие соображения, тем более что некоторые досократики (Анаксимен, Анаксагор) также допускали существование невидимых (темных) небесных тел, находящихся ниже Луны.

В источниках сообщаются имена и других ученых той эпохи, которые, не будучи философами, занимались астрономией. Первым из них называют Клеострата Тенедосского, жившего во второй половине VI в. до н. э. и который будто бы оборудовал наблюдательный пункт на горе Иде, откуда следил за движениями небесных светил. Он, вероятно, имел какие-то контакты с вавилонскими астрономами; в частности, ему приписывают установление наименований созвездий зодиака, хорошо известных вавилонянам. Клеострат написал поэму в стихах, называвшуюся «Астрология», от которой до нас дошел один коротенький фрагмент.

Деятельность греческих астрономов в VI—V вв. по н, а. в значительной степени имела практическую направленность, ее важной задачей было уточнение календаря, частности согласование лунного календаря (с которым было связано большинство религиозных ритуалов) с фактической длительностью солнечного года. Эта задача решалась путем установления многолетних циклов, между которыми требовалось вставлять дополнительные месяцы. В качестве первого такого цикла называют «октаэтериду» («восьмилетие»), введенную то ли Клеостратом, то ли его учеником Гарпалом; последнему приписывается также уточнение длительности солнечного года. Между прочим, имеется любопытное указание, что Гарпал был именно тем греком, который помог Ксерксу навести мосты через Геллеспонт.

Рис. 3. Система мира по Филолаю: ЦО — центральный огонь, ПЗ — противоземля, 3 — Земля, Л — Луна, С — Солнце, Пл — пять планет (последовательность которых источниками не засвидетельствована)


Более определенные сведения имеются о двух афинских астрономах второй половины V в. до н. э,— Метоне и Евктемоне. Свои наблюдения они проводили в разных местах — в Афинах, на Кикладах, в Македонии и Фракии. Оба они упоминаются в связи с полным солнечным затмением, имевшим место 27 июня 432 г. до н. э. Метой (кстати сказать, осмеянный Аристофаном в «Птицах») установил 19-ти летний лунно-солнечный цикл, состоявший из 235 месяцев, семь из которых были дополнительными; 110 месяцев этого цикла имели до 29 дней, 125 — по 30 дней. Солнечный год, по Метону содержал 365 5/19 (365,263) дней, что всего лишь на полчаса отличается от точного значения. Что касается Евктемоиа, то ему и присваивается обнаружение неодинаковой длительности времен года; согласно его наблюдениям, астрономические времена года равны соответственно 90, 90, 92 и 93 дням.

Примерно в гаже время жил Энопид Хиосский, который, как считают, был первым астрономом, измерившим наклон эклиптики по отношению к экватору. Он также предложил свой лунно-солнечный цикл, который равнялся 59 годам. Длительность солнечного года Энопид оценил в 365 22/59 дней.

Из всего сказанного явствует, что по сравнению с бурным взлетом математики достижения греческих астрономов в рассматриваемый период были более чем скромными. И все же было бы несправедливо недооценивать значение кропотливой работы, проводившейся такими людьми, как Энопид, Метон и Евктемон. Эта работа подготавливала фундамент, на котором впоследствии было воздвигнуто здание античной теоретической астрономии Евдокса—Гиппарха—Птолемея.

Глава 3. Греческая наука эпохи Платона и Аристотеля

Общая обстановка в конце V в. до н. э.

Последние десятилетия V в. до н. э., ознаменовавшиеся трагической Пелопоннесской войной, были временем глубокого кризиса греческой политической формы города-государства. Рабовладельческая демократия в той форме, в какой она установилась в Афинах и в большинстве других полисов тогдашнего эллинского мира, начала обнаруживать присущие ей внутренние дефекты. Она оказалась неспособной обеспечить ни мир, ни всеобщее благосостояние, ни такой правопорядок, который гарантировал бы жизнь и безопасность граждан. Неограниченное народовластие стало оборачиваться неограниченной тиранией. Война крайне обострила противоречия, существовавшие между различными группами общества,— между потомственной аристократией и демосом, богатыми и бедными, жителями городских и сельских общин, наконец — между всадниками и гоплитами (тяжеловооруженными воинами), с одной стороны, и моряками (фетами) — с другой. Классовая борьба приводила к кровавым столкновениям, порою завершившимся массовой резней.