ла введена в связи с тем обстоятельством, что орбита Луны не совпадает с эклиптикой, а находится то выше нее, то ниже. Ось этой сферы была жестко связана с двумя точками второй сферы и имела наклон по отношению к оси последней (причем этот наклон, по утверждению Симпликия, значительно превышал угол между осями второй и третьей сфер в случае Солнца). О периоде вращения этой сферы в дошедших до нас источниках ничего не сообщается; как и в случае третьей — солнечной сферы,— Симпликий характеризует ее вращение эпитетом «медленное».
Приведенная реконструкция несколько отличается от реконструкции Скиапарелли; однако она вполне соответствует свидетельствам древних авторов, писавших об Евдоксе.
Значительно сложнее обстояло дело с моделированием движения пяти планет. Дело в том, что при своем движении по небесному своду планеты не только отходят от плоскости эклиптики то в ту, то в другую сторону, но через определенные промежутки времени вдруг прекращают свое движение по поясу зодиака с запада на восток и в течение нескольких дней остаются неподвижными по отношению к окружающим звездам, а затем начинают двигаться с востока на запад (так называемое ретроградное, или «попятное», движение планет). Через некоторое время, сильно отличающееся у разных планет, они снова как бы останавливаются, после чего возобновляют свое нормальное («прямое») движение с запада на восток. Теперь мы знаем, что подобный характер видимого движения планет связан с вращением Земли вокруг Солнца, но Евдоксу и его современникам это обстоятельство было, разумеется, неизвестно. Задача представления такого движения путем комбинации нескольких равномерных круговых движений кажется, на первый взгляд, очень трудной.
Евдокс решил эту задачу гениально простым образом. Для каждой планеты он ввел четыре равномерно вращающиеся сферы. Первая сфера, как и в рассмотренных выше случаях, соответствовала суточному движению небесного свода вокруг мировой оси. Вторая сфера аналогичным образом служила для описания поступательного движения планеты вдоль плоскости эклиптики; ее период вращения был равен сидерическому периоду соответствующей планеты[2]. Некоторое своеобразие представляло в этом случае видимое движение Меркурия и Венеры, которые никогда не отходят далеко от Солнца и вместе с ним совершают годичный оборот вдоль пояса зодиакальных созвездий. По этой причине Евдокс предположил, что сидерический период для этих двух планет совпадает с солнечным годом (на самом деле он составляет 88 дней для Меркурия и 225 дней для Венеры). Значения сидерического периода для остальных планет, которые дает Евдокс, гораздо лучше согласуются с истинными данными.
Для представления описанного выше «петлеобразного» пути планет в процессе их движения по эклиптике Евдокс ввел третью и четвертую сферы. Третья сфера имела полюса, жестко связанные с двумя точками экватора второй сферы (т. е. эклиптики), и, подобно второй сфере, вращалась с запада на восток. Полюса этой сферы были различны для разных планет, лишь для Меркурия и Венеры они оказывались совпадающими. Наконец, четвертая сфера, к экватору которой была прикреплена соответствующая планета, вращалась вокруг оси, наклоненной под определенным углом к оси третьей сферы, причем угол наклона различался у всех планет. Эта четвертая сфера вращалась с тем же периодом, что и третья, но в противоположном направлении.
Путем соответствующего геометрического построения можно показать, что в результате комбинации вращений третьей и четвертой сфер планета будет описывать около плоскости эклиптики своеобразную кривую, несколько напоминающую восьмерку (рис. 5). Эту кривую Евдокс назвал «гиппопедой» (hippopede), что в переводе означает «лошадиные путы»; в наше время она носит наименование лемнискаты. Путем подбора соответствующих углов наклона между осями третьей и четвертой сферы оказалось возможным довольно точно воспроизвести петлеобразное движение Юпитера и Сатурна. Однако, для остальных планет результаты оказались значительно менее утешительными (так, для Марса и Венеры из модели Евдокса вообще не удается получить попятного движения). Мы не знаем, в какой степени Евдокс осознавал дефекты своей модели. Вероятно, они вскоре стали очевидны, потому что некоторое время спустя Каллипп предложил усовершенствованную, хотя и несколько усложненную (по сравнению с Евдоксовой) модель космоса, о которой будет сказано ниже.
Рис. 5. «Гиппопеда» Евдокса
Подытожим принципиальные особенности модели Евдокса, повторявшиеся во всех последующих гомоцентрических моделях космоса. Каждому небесному телу (за исключением неподвижных звезд) придается некоторое число равномерно вращающихся сфер. Эти сферы взаимосвязаны друг с другом, хотя и совершенно независимы от сфер, приданных другим небесным светилам. Их связь выражается в том, что полюса каждой последующей сферы прикреплены к фиксированным точкам предыдущей сферы; в силу этого каждая сфера, помимо своего собственного вращения, участвует во вращательных движениях всех предшествовавших (наружных) сфер. Само небесное тело жестко прикреплено к определенной точке экватора последней (самая внутренняя) сферы. Первая (самая наружная) сфера тождественна по характеру своего движения с первыми сферами всех прочих небесных тел, а также со сферой неподвижных звезд.
Согласно свидетельствам античных авторов, Евдокс был не только теоретиком, но и первоклассным астрономом-наблюдателем. При своей школе в Кизике он организовал первую греческую обсерваторию, где его ученики вели систематические наблюдения за небесными светилами. Он дал детальное описание созвездий, видимых на широте Греции, составил каталог звездного неба. До нас дошли названия двух астрономических сочинений Евдокса — «Явления» (Phainomena) и «Зеркало» (Enoptron), которые, согласно Гиппарху, были посвящены одним и тем же вопросам и различались лишь в деталях. На основе этих сочинений греческий поэт Арат написал в III в. до н. э. дидактическую поэму, первая часть которой содержала красочное описание созвездий и связанных с ними легенд (вторая часть поэмы касалась в основном метеорологических вопросов). Поэма Арата, называвшаяся, как и книга Евдокса, «Явления», пользовалась в древности большой популярностью и в течение долгого времени была важнейшим источником астрономических сведений среди образованных кругов греко-римского общества.
Из числа непосредственных учеников Евдокса древние источники называют двух выдающихся математиков — Менехма и Динострата и астронома Полемарха, который в свою очередь был учителем Каллиппа из Кизика.
В 20-х годах IV в. до н. э. Каллипп находился в Афинах, где познакомился с Аристотелем, от которого мы, собственно говоря, и знаем о тех изменениях, которые были внесены Каллиппом в модель космоса, разработанную Евдоксом. Согласно утверждению Симпликня, Каллипп не написал книг, в которых была бы изложена его теория.
Как мы видели выше, модель Евдокса давала хорошие результаты для Юпитера и Сатурна, но значительно худшие для внутренних планет. Поэтому Каллипп сохранил число сфер, приданных Евдоксом двум внешним планетам, но добавил по одной сфере для Меркурия, Венеры и Марса. О характере движения этой пятой сферы античные источники не сообщают никаких деталей. Упоминавшийся выше итальянский астроном Скиапарелли высказал предположение, каким образом эта сфера могла бы работать, но это предположение имеет чисто гипотетический характер. Кроме того, Каллипп добавил по две сферы для Солнца и для Луны. Это позволило ему объяснить различную длительность времен года, которая была хорошо известна со времен Евктемона, а также учесть иррегулярности движения Луны, остававшиеся необъясненными в модели Евдокса.
Таким образом, общее число небесных сфер по Каллиппу (включая сферу неподвижных звезд) оказалось равным тридцати четырем.
Следующий принципиально важный шаг в построении общей картины мира был сделан учеником Платона Гераклидом Понтийским, уроженцем Геоаклеи — города, расположенного на южном берегу Черного моря. Сочинения этого, несомненно очень незаурядного мыслителя до нас не дошли, но из косвенных свидетельств известно, что он объяснил видимое суточное движение небосвода не оборотами внешних небесных сфер вокруг Земли, а вращением самой Земли вокруг собственной оси. Намек на эту идею содержался впрочем, уже в «Тимее» Платона. Древние источники сообщают также, что гипотеза о вращении Земли вокруг оси высказывалась еще задолго до Гераклида пифагорейцем Экфантом из Сиракуз, но об этом последнем мы практически ничего не знаем.
Гераклиду Понтийскому приписывается еще другая смелая гипотеза. Известно, что две внутренние планеты — Меркурий и Венера — не уходят далеко от Солнца, а оказываются то по одну, то по другую его сторону. В связи с этим Гераклид будто бы предположил, что. Меркурий и Венера вращаются не вокруг Земли, а вокруг Солнца и лишь это последнее движется по круговой орбите вокруг Земли. Если эти сообщения верны, то тогда нужно будет признать, что Гераклид Понтийский сделал первый существенный шаг по направлению к гелиоцентрической системе Аристарха.
Гипотеза о вращении Меркурия и Венеры вокруг Солнца имеет значение еще вот в каком отношении. Важнейший недостаток моделей Евдокса и Каллиппа состоял не в том, что они не воспроизводили (или плохо воспроизводили) какие-то детали видимого движения планет, а в том, что они не давали объяснения фундаментальному факту — изменению в блеске планет. Ведь планеты в этих моделях находятся всегда на одном и том же расстоянии от Земли, следовательно, они, казалось бы, должны обладать неизменной яркостью. Между тем яркость планет — особенно внутренних — подвержена очень большим колебаниям. Гипотеза Гераклида Понтийского позволяла, хотя бы в принципе, объяснить это обстоятельство — по крайней мере для Меркурия и Венеры.
О причинах, воспрепятствовавших принятию гипотез Гераклида Понтийского античной наукой, мы будем говорить в дальнейшем — в связи с неуспехом гелиоцентрической системы мира Аристарха Самосского.