Из других математических работ Аполлония полностью сохранился (в арабском переводе) лишь один небольшой трактат в двух книгах — «О сечении в данном отношении». В нем рассматривается следующая задача: даны две прямые, лежащие в одной плоскости, и точка на каждой из них; через некоторую третью точку надо провести прямую так, чтобы она отсекала на данных прямых, начиная от данных точек, отрезки, которые находились бы друг к другу в заданном отношении. Первая книга трактата рассматривает случай, когда данные прямые параллельны, вторая — когда они пересекаются (рис. 8). Аполлоний показывает, что эта задача сводится к решению некоторого квадратного уравнения.
Рис. 8. Теорема Аполлония о сечении в данном отношении.
Аполлоний написал еще два трактата на сходные темы; о них мы знаем по изложению Паппа.
«О сечении с заданной площадью». В этом сочинении рассматривалась задача, аналогичная предыдущей: оба отсекаемых отрезка должны, при умножении их друг на друга, дать прямоугольник заданной площади.
«Об определенном сечении». На прямой даны четыре точки: A, B, С и D. Определить точку Р, лежащую на той же прямой, так, чтобы произведение АР•СР имело заданное отношение к BP•DP.
Несколько трактатов Аполлония известны нам по ссылкам на них Паппа и других позднейших авторов.
«О касаниях». Здесь разбирается знаменитая задача Аполлония: даны три объекта, каждый из которых может быть точкой, прямой или окружностью. Найти окружность, которая проходит через каждую из данных точек и касается заданных прямых или окружностей.
«О плоских геометрических местах». В этом трактате Аполлоний доказывал ряд теорем, в которых рассматривались геометрические места, относящиеся к прямым и окружностям. Некоторые из этих теорем приводятся Паппом. Интересно, что в этом трактате впервые используются инверсия на плоскости и геометрия как преобразования, переводящие «плоские места» (прямые и окружности) в такие же «места».
«О сравнении додекаэдра и икосаэдра». Эта книга упоминается Гипсиклом во введении к так называемой XIV книге «Начал» Евклида. В ней доказывалось, что если додекаэдр и икосаэдр вписаны в один и тот же шар, то их поверхности имеют то же отношение, что и их объемы.
Известны названия еще некоторых сочинений Аполлония, но о их содержании нет определенных сведений. Среди них — работа «О неупорядоченных иррациональностях», в которой, как можно предполагать, классификация иррациональных величин, содержащаяся в «Началах» Евклида, была распространена на более широкие классы иррациональностей. К сожалению, мы не располагаем данными, которые позволили бы судить, насколько далеко Аполлоний продвинулся в этой области.
Но даже из того, что мы знаем о достижениях Аполлония — то ли из его оригинальных текстов, то ли из свидетельств о нем математиков более позднего времени — мы вправе заключить, что в его лице эллинистическая эпоха дала миру первоклассного математического гения. В трудах Аполлония греческая геометрическая алгебра достигла высшего расцвета. После него это направление математической науки начинает постепенно хиреть и иссякать. Для дальнейшего успешного развития античная математика нуждалась в новых импульсах; эти импульсы, однако, нельзя было почерпнуть в тогдашней действительности.
«Малые» математики эпохи эллинизма
Наряду с гигантскими фигурами Евклида, Архимеда и Аполлония в Александрии и в других культурных центрах III—II вв. до н. э. жили и работали математики меньшего калибра, не давшие новых идей и не разработавшие принципиально новых теорий. И все же некоторые из них заслуживают того, чтобы их имена не были преданы забвению.
О Кононе Самосском, старшем друге Архимеда, мы уже упоминали выше. О его собственных математических достижениях нам ничего не известно; впрочем, он был, по-видимому, скорее астрономом, чем математиком.
Математические труды другого друга Архимеда — Эратосфена Киренского — были не столь значительны, как его работы в области географии и хронологии, но они все же свидетельствовали об оригинальном и творческом уме их автора. Так, Эратосфен дал механическое решение знаменитой задачи об удвоении куба; это решение было высечено на стене одного из александрийских храмов. Он занимался теорией чисел и предложил оригинальный способ выделить простые числа из последовательности всех нечетных чисел (так называемое «решето Эратосфена»). В диалоге «Платоник» он изложил основы античной арифметики, где, в частности, были сформулированы правила образования различных пропорций.
Рис. 9. Конхоида (или кохлоида) Никомеда. При любом А (меньше 90°) AB=DE
Старший современник Аполлония, Никомед, известен главным образом тем, что открыл новую алгебраическую кривую — конхоиду. Она определяется как геометрическое место точек, образуемое концами лучей, исходящих из точки О и пересекающих прямую, причем расстояние от этой прямой до конца луча остается всегда равным а (рис 9). В полярных координатах уравнение этой кривой имеет вид:
Как рассказывают источники, Никомед очень гордился этой кривой и построил прибор для ее черчения. Он применил свою кривую для решения задач об удвоении куба и трисекции угла.
Ко второй половине II в. до н. э. относится творчество Диокла, изучавшего другую алгебраическую кривую — циссоиду. Она строится следующим образом. Даны два взаимно перпендикулярных диаметра круга АВ и CD. Пусть точки К и L удаляются от B в обе стороны, все время, однако, оставаясь на равном расстоянии от диаметра АВ. Из точки L опустим на диаметр CD перпендикуляр. Пересечение этого перпендикуляра с прямой KD даст нам точку, которая, по мере удаления К и L от В, будет описывать циссоиду (рис. 10). С помощью этой кривой Диокл также решил задачу об удвоении куба. Кроме того, он предложил свое решение задачи Архимеда о делении шара в заданном отношении; это решение, однако, было утеряно еще в древности.
Рис. 10. Построение циссоиды
Между III в. до н. э. и па-чалом нашей эры жил Зенодор — автор трактата «Об изопериметрических фигурах», где в частности, было показано:
1) что из двух правильных многоугольников с равными периметрами большую площадь будет иметь прямоугольник с большим числом сторон;
2) что если окружность круга и периметр правильного многоугольника равны, то площадь круга будет всегда больше правильного многоугольника;
3) что из всех многоугольников равного периметра и с равным числом сторон наибольшую площадь будет иметь правильный многоугольник.
Следствие этих теорем состоит в том, что из всех изопериметрических фигур круг будет иметь наибольшую площадь. Зенодор также утверждал, что из всех пространственных тел с одинаковой поверхностью наибольшим объемом будет обладать шар. Это, вообще говоря, правильное предложение, им не было доказано; он сумел доказать лишь следующие теоремы (которые в его сочинения шли под номерами 13 и 14):
1) Если правильный многоугольник с четным числом сторон вращать вокруг самой длинной его диагонали, то получится тело, ограниченное коническими поверхностями, которое будет меньше шара с такой же поверхностью.
2) Каждый из пяти правильных многогранников будет меньше шара с той же поверхностью.
Наконец, следует назвать Гипсикла, живущего в Александрии во II в. до н. э. Он написал сочинение о правильных многогранниках, по своему содержанию примыкавшее к XIII книге «Начал» Евклида; вероятно, именно поэтому оно было позднее включено в «Начала» в качестве XIV книги и таким образом дошло до нашего времени. В этом сочинении Гипсикл рассматривает додекаэдр и икосаэдр, вписанные в один и тот же шар, и показывает, что объемы этих двух фигур относятся друг к другу так же, как их поверхности. Кроме того, он доказывает, что указанное отношение будет равно отношению ребра вписанного куба к ребру икосаэдра. Других чисто математических работ Гипсикла мы не знаем; впрочем, в источниках имеется указание на то, что он писал о многоугольных числах, примыкая, таким образом, к пифагорейской традиции.
Диокл, Зенодор и Гипсикл (и вообще все математики эллинистической эпохи, жившие после Аполлония) обычно именуются «эпигонами». Они действительно были эпигонами — в том смысле, что к основному богатству античной математики, накопленному гениями IV—III вв. до н. э., они добавили лишь мелочи, не выходившие за рамки уже существовавших идей и теорий.
Астрономия
В предыдущей главе, излагая достижения античной астрономии классического периода, мы дошли до Гераклида Понтийского, предложившего модель мира, в которой. Земля совершала суточные обороты вокруг своей оси, а Меркурий и Венера вращались вокруг Солнца. Система Гераклида еще не снимала всех трудностей, связанных с изменением яркости планет. Это изменение было характерно не только для Венеры, но и для Марса: находясь в противостоянии с Солнцем, Марс имел значительно большую яркость, чем в соединениях, причем эти противостояния и соединения могли происходить в любых местах зодиакального пояса. Объяснить это можно было двояко: либо Марс вращается вокруг Солнца, а Солнце, в свою очередь, совершает обороты вокруг Земли, либо же Земля, находясь между Солнцем и Марсом, вращается вокруг Солнца. Первый путь был избран уже в Новое время знаменитым датским астрономом Тихо Браге: у него все пять видимых планет вращались вокруг Солнца, а Солнце — в соответствии с традиционной геоцентрической точкой зрения — вращалось вокруг Земли. Второе из указанных допущений; означавшее переход к гелиоцентрической системе мира, было сделано великим астрономом древности — Аристархом.
Аристарх Самосский родился во второй половине IV в. и умер предположительно в середине III в. до н. э.; таким образом, он был современником Евклида, Эпикура и Стратона. О его жизни нет никаких сведений — за исключением того, что примерно в 288—277 гг. до н. э. он занимался астрономическими наблюдениями в Александрии. Основное сочинение Аристарха, в котором была изложена его система мира, до нас не дошло; о его содержании коротко сообщает Архимед в «Псаммите». Сохранился текст лишь одного небольшого, но крайне интересного трактата Аристарха «О размерах и расстояниях Солнца и Луны». Трактат Аристарха написан по образцу математических подобий того времени: он состоит из ряда выводимых друг из друга теорем, которым предшествуют шесть фундаментальных положений, или «гипотез», взятых в основном из данных наблюдений, полученных при прохождении Луны через тень Земли во время лунных затмений. Из этих данных Аристарх заключает: 1) что расстояние от Земли до Солнца составляет приблизительно 18—20 расстояний от Земли до Луны; 2) что диаметры Солнца и Луны находятся в том же отношении друг к другу, как и их расстояния о земли; 3) что отношение диаметра Солнца к диаметру Земли, должно лежать в пределах между 19/3 и 43/6. Отсюда следует, что объем Солнца должен быть в (19/3)