Антикитерский корабль не заходил на Сицилию – он затонул, когда был намного восточнее острова. Но он шел в том направлении, и его вероятный курс на Рим был проложен как раз мимо Сиракуз. Возможно, богатый владелец механизма посетил школу Посидония с тем, чтобы продемонстрировать философам свою новую «игрушку», а затем сел на злосчастный корабль, чтобы отправиться домой. Или, возможно, механизм был сделан одним из самых талантливых мастеров Родоса по заказу покупателя из Сиракуз. Однако датировка около 100 г. до н. э. говорит о том, что инструменту было уже несколько десятков лет к тому моменту, когда между 70 и 60 гг. до н. э. он оказался на корабле. Так что его владелец мог перебраться из Сиракуз на Родос или куда угодно в Восточном Средиземноморье и взять механизм с собой. Или, может быть, его увезли на восток как ценный подарок или религиозное приношение. И позже прибор снова отправился на запад – уже как римский трофей.
Какова бы ни была история Антикитерского механизма, судя по всем свидетельствам, включая сочинение Цицерона, очень похоже, что подобные устройства с зубчатыми колесами делались тогда и в Сиракузах, и на Родосе. Традиция механики, начатая Архимедом в Сиракузах на 100 лет раньше, оставалась сильна, и его первоначальная конструкция видоизменялась в соответствии с новейшими астрономическими данными с Родоса и отовсюду, откуда только возможно. Более поздние модели распространялись по всему греческому миру.
Фактически традиция создания подобных устройств продолжалась по крайней мере вплоть до IV в. Математик Папп, живший в Александрии, писал, что тогда там существовала целая группа механиков, называвшихся «изготовителями сфер», которые «конструировали модели небес». Эти модели, однако, никогда не превосходили сложностью Антикитерский механизм. Развитие сложной технологии требует процветающей городской среды, стабильной, с квалифицированными ремесленниками и богатыми клиентами. Все это имелось в эллинистическом мире, но этому не суждено было просуществовать долго. К началу I в. до н. э. Сиракузы и Родос оставались последними островками, где работа греческих ученых не прерывалась. Но Сиракузы под римским влиянием постепенно клонились к упадку, а Родос в 43 г. до н. э. был разграблен римским полководцем Кассием и после этого так и не сумел вернуть былое величие.
Хотя римляне так же высоко, как искусство, ценили греческую философию и науку, сами они никогда наукой не занимались, и на протяжении всего существования римской империи научное знание постепенно приходило в упадок. Начиная с III в. уже очень немногие ученые делали что-то свое. Вместо этого они писали комментарии к трудам эллинистических предшественников. (Папп был одним из последних великих греческих математиков.) А когда Римская империя рухнула, свет учености в Европе почти угас. Западному обществу понадобилась почти 1000 лет, чтобы он разгорелся вновь.
Теперь мы знаем: Прайс был прав, когда утверждал, что технология, заключенная в Антикитерском механизме, не была полностью утрачена. Солнечные часы VI в., снабженные зубчатыми колесами, обломки которых принесли Джудит Филд и Маклу Райту в Музей науки, стали важной частью свидетельств, демонстрирующих, что в Византийской империи эта технология сохранилась, пусть и в упрощенном виде. (Это же касается и искусства создания движущихся манекенов. В X в. император Константин VII все еще свято следовал принципу удивлять народ. Как писал епископ Кремоны Лиутпранд, трон его, который мог опускаться и подниматься, был окружен механическими зверями, среди которых были рычащие львы и дерево с поющими птицами.)
В VII–VIII вв. арабы захватили огромные территории, включая Сирию, Месопотамию, Египет, Иран и Испанию. Правители обратили новые земли в ислам и считали своим долгом сделать накопленные греками знания доступными на арабском языке. В IX в. они финансировали работу по переводу всех греческих текстов, которые только удалось найти, на арабский и даже отправлялись за ними в Византию. Прайсу были известны два мусульманских календаря с зубчатыми колесами – «Ловушка для Луны» из Гянджи (на территории современного Азербайджана), описанная аль-Бируни в XI в., и другой, присоединенный к сохранившейся до наших дней астролябии, сделанной в Исфахане (Иран) в XIII в.
Еще один экземпляр выявили недавно – описание «Ловушки для Луны» обнаружилось в трактате X в., выставленном на продажу в 2005 г. Она тоже соединена с солнечными часами и выглядит точно так же, как и воссозданный Майклом Райтом византийский прибор. Трактат анонимный, но полагают, что его автором был астроном по имени Настул, работавший в Багдаде около 900 г. Поскольку и в этом случае, как и в приборе Райта, календарь с зубчатыми колесами совмещен с солнечными часами, можно предположить более явную связь между византийской и мусульманской традициями создания таких приборов, а все вместе это говорит о том, что идея использовать зубчатые колеса для отображения движения Солнца и Луны была воспринята исламским миром непосредственно от греков.
Мусульманские инженеры продолжили также греческую традицию водяных часов и оставили описания впечатляющих механизмов, приводившихся в движение и водой, и ртутью, включая так называемые «Архимедовы часы». У некоторых из них были вращающиеся шкалы, изображавшие небеса, подобные тем, существование которых Дерек де Солла Прайс предположил в Башне ветров, а также движущиеся фигуры и звонкие куранты – такие как падающие на цимбалы шарики. Большинство из них, однако, имели самую простую систему зубчатых передач: у текущей воды в принципе не хватает мощности, чтобы привести в движение большое число колес (именно поэтому Антикитерский механизм почти наверняка вращали вручную).
Но есть одно исключение, говорящее в пользу идеи Прайса о том, что греческая технология создания зубчатых передач, примененная в Антикитерском механизме, прямо повлияла на развитие часов. Это арабская рукопись, найденная только в 1970 г., но написанная в X или XI в. в Андалузии инженером по имени аль-Муради. В ней он описывает разнообразные водяные часы. Рукопись серьезно повреждена, но уяснить общий принцип их работы можно. Большинство известных нам часов исламского мира – довольно хрупкие приспособления, но те, о которых пишет аль-Муради, большие и грубые – в движение их приводят быстрые потоки, в них используются большие колеса, веревки и тяжелые противовесы. Система передач достаточно сложна, и в ней присутствуют передачи, напоминающие эпициклические. Аль-Муради сообщает, что взялся за труд, чтобы предмет не подвергся забвению, и, по-видимому, речь идет не о новых изобретениях, а о технологии, существовавшей в течение какого-то времени. Так что не исключено, что и эпициклическая передача пришла к арабам непосредственно от греков.
Между тем колесо истории продолжало вращаться. Европа собиралась с силами и на протяжении XII–XIII вв. в серии крестовых походов отвоевала часть территории, захваченной мусульманами, в том числе Испанию. На этот раз новые владыки захотели сделать старые знания доступными христианскому миру и финансировали перевод древних документов на латынь – как с арабских копий, так и с греческих оригиналов.
К этому времени католическая церковь стала питать большой интерес к поискам способов точного отсчета времени, чтобы регулировать монастырские работы и молитвы. Многие века для этого использовались размеченные свечи, но, по мере того как знания, распространенные в исламском мире, стали проникать в христианскую Европу, в монастырях начали появляться водяные часы. В 1198 г. в Британии во время пожара в аббатстве Бери-Сент-Эдмундс монахи «бегали к часам» за водой. А на иллюстрации к рукописи примерно 1285 г. изображены водяные часы в монастыре в северной Франции с колесом, которое, поворачиваясь, заставляло звонить колокол.
Около этого времени какой-то неведомый гений наконец изобрел деталь, необходимую для перехода к полностью механическим часам, – регулятор хода. Монастырям было важно, чтобы часы были соединены с колоколами, которые звонили бы в нужное время (чтобы монахи просыпались ночью для молитвы). Возможно, кто-то экспериментировал с колеблющимися грузами или молоточками, ударявшими в колокола. И понял, что они могут не приводиться в движение с помощью часов, а регулировать силу, необходимую для того, чтобы привести часы в движение.
Как только часы стали приводиться в движение механически, дополнительная мощность позволила добавлять в них намного больше зубчатых колес, и эти устройства начали стремительно усложняться. Через несколько десятилетий часы распространились по всей Европе и почти сразу же стали включать в себя астрономические циферблаты со шкалами и указателями, призрачно напоминавшими их античных предшественников, таких как Антикитерский механизм и Башня ветров. Часы Ричарда Уоллингфордского, установленные в аббатстве Сент-Олбанс в 1336 г., – одни из первых, известных нам. У них большой, напоминающий астролябию циферблат, который показывает положение Солнца в зодиаке, возраст и фазу Луны, звездную карту и, вероятно, планеты. (Более поздние дополнения включают Колесо Фортуны и уровень прилива у Лондонского моста.) В 1364 г. Джованни де Донди завершил свои часы в Падуе. Как видно по их реконструкции в Музее науки, в их семисторонней конструкции были циферблаты, показывавшие время дня, движения всех известных планет, календарь постоянных и плавающих праздников, и стрелка, предсказывавшая затмения и совершавшая один оборот за 18 лет в соответствии с Саросом.
Скорость, с которой усложнялись и распространялись эти приборы, и сходство их с конструкциями, разработанными греками, говорят о том, что они не возникли с нуля. Фрагменты необходимых технологий, идея использовать зубчатые колеса для отображения небес – все это должно было «в спящем виде» сохраняться во множестве устройств, включая водяные часы и календари, приводимые в движение вручную. А когда изобретение регулятора хода сделало возможным создание механических часов, старые приемы возродились в новой традиции.