Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей — страница 12 из 63

М. Ф.: В прессе много писали, что успехи глубокого обучения преувеличены и следует сокращать инвестиции в эту сферу. Мне даже встречалось выражение «зима ИИ». Исследования зашли в тупик?

Дж. Х.: В 1980-х гг., когда вокруг ИИ в целом и метода обратного распространения в частности была большая шумиха, люди ждали чудес и не дождались. Но сегодня чудеса уже происходят, а на шумиху не стоит обращать внимание. Наши мобильные телефоны распознают речь, компьютеры узнают объекты на фотографиях, Google выполняет машинный перевод. Искусственно созданный ажиотаж означает раздачу обещаний, которые никто не собирается выполнять. Но сейчас мы уже многого достигли и не собираемся на этом останавливаться.

В интернете я иногда вижу рекламу, где говорится, что это индустрия стоимостью 19,9 триллиона долларов. Кажется, что это много и похоже на обман, но идея о том, что это сфера с многомиллиардными доходами, явно не просто шумиха, потому что несколько человек вложили в нее миллиарды долларов, и это сработало для них.

М. Ф.: Во что лучше всего инвестировать для продвижения вперед? Ведь все еще остались люди, которые верят в условный ИИ и считают, что оптимально совмещать глубокое обучение с более традиционными подходами. Как вы относитесь к этой точке зрения?

Дж. Х.: Я считаю, что работа мозга – это взаимодействие больших векторов нейронной активности. И именно по такому принципу будет работать ИИ. Разумеется, понять механику рассуждений тоже важно, но, мне кажется, мы сможем это сделать уже после того, как реализуем все остальное.

Я не верю в гибридные системы. Был пример в автомобильной промышленности, когда электродвигатель стали использовать для впрыскивания бензина. Точно так же сторонники условного ИИ, признавая все преимущества глубокого обучения, хотят использовать его как слугу, который обеспечит функционирование символических рассуждений. Это попытка остаться на старых позициях, невзирая на меняющиеся обстоятельства.

М. Ф.: Мне вспоминается ваш последний проект, связанный с так называемыми капсулами, имитирующими, как я понимаю, колонки кортекса в мозгу. Считаете ли вы, что результаты изучения мозга следует включать в работу с нейронными сетями?

Дж. Х.: Капсулы появились как сложная и умозрительная комбинация полудюжины разных идей. Об успехах этой концепции пока говорить рано, но ее основой действительно послужила структура человеческого мозга. Думать о работе с нейронными сетями на базе достижений нейробиологии несколько наивно. Ученые пытаются понять базовые принципы функционирования мозга, но при этом есть еще и многочисленные детали, которые по-разному выглядят на разном аппаратном обеспечении. Графические процессоры (GPU) мало напоминают мозг, но это не мешает нам искать общие принципы работы мозга и нейросетей. Например, в обоих случаях большая часть знаний возникает благодаря обучению, а не механическому запоминанию фактов.

Для условного ИИ нужна огромная база фактов и правила их связи друг с другом. Перенести какое-то знание из одного мозга в другой невозможно. В голове множество параметров, то есть весов связей между отдельными нейронами, которые не передадутся. Если один человек расскажет, каким образом что-то работает, другой может повторить эти действия, но не более. И это хорошо, потому что у каждого своя нейронная сеть.

М. Ф.: Правда ли, что глубокое обучение в основном происходит на базе маркированных данных, то есть речь идет о так называемом обучении с учителем, а задача обучения без учителя еще не решена?

Дж. Х.: Это не совсем так. Существует большая зависимость от размеченных данных, но вопрос в том, что считать такими данными. Например, если я попрошу вас предсказать следующее слово в большой текстовой строке, меткой правильного ответа будет слово, которое фактически там фигурирует. Дополнительные метки тут не нужны. А если нужно обучиться распознавать на картинках кошек, потребуется метка «кошка», которая не является частью изображения. Эти метки нужно будет добавлять вручную. По идее первая задача тоже относится к обучению с учителем, потому что мы имеем дело с метками. Но это своего рода промежуточный вариант между маркированными и немаркированными данными.

М. Ф.: Дети по большей части учатся без учителя.

Дж. Х.: Исходя из того, что я говорил выше, ребенок воспринимает окружающую среду, пытаясь предсказать, что будет дальше. Затем, когда что-то происходит, событие помечается как правильно или неправильно угаданное. К сожалению, в случае прогнозирования сложно понять, какой из вариантов, «с учителем» или «без учителя», применяется. Задача, в которой по набору изображений нужно предсказать, какое будет следующим, не попадает ни в одну из двух категорий.

М. Ф.: То есть одно из основных препятствий сейчас – отсутствие общей формы обучения?

Дж. Х.: Да. Но я утверждаю, что решить задачу предсказания могут алгоритмы обучения с учителем.

М. Ф.: А как бы вы определили сильный ИИ?

Дж. Х.: Меня вполне устраивает официальное определение, утверждающее, что это интеллект, сравнимый с человеческим, но многие думают, что появятся отдельные модули ИИ, которые будут становиться все умнее и умнее. Они не понимают, что нейронные сети в чем-то превосходят людей, а в чем-то сильно уступают им. Например, ИИ-система может лучше интерпретировать медицинские изображения, но ей сложно рассуждать о них.

Представляя отдельные ИИ-системы, люди игнорируют социальный аспект. Для ИИ требуются вычислительные ресурсы, поэтому создание сильного ИИ приведет к появлению сообществ интеллектуальных систем. Ведь сообществу доступно гораздо больше данных, чем отдельной системе. Лучше распределить данные по множеству систем и заставить их общаться друг с другом.

М. Ф.: И все сведется к появлению связанного интеллекта?

Дж. Х.: Но ведь в мире людей все обстоит точно так же. Мы извлекаем знания из источников, составленных для нас другими людьми. А опыт обучения позволяет прийти к аналогичному пониманию.

М. Ф.: Реально ли создать сильный ИИ?

Дж. Х.: В компании OpenAI уже есть система, играющая в сложные компьютерные игры как одна команда.

М. Ф.: А когда, по вашим прогнозам, ИИ научится рассуждать, думать и действовать как человек?

Дж. Х.: Рассуждения – это одна из тех вещей, с которыми люди действительно хорошо справляются. Пройдет немало времени, прежде чем большие нейронные сети достигнут таких же результатов. И до этого они успеют превзойти людей во многих других вещах.

М. Ф.: Как вы можете охарактеризовать сильный ИИ?

Дж. Х.: Если вы говорите об универсальных роботах, таких как лейтенант-коммандер Дейта, то вряд ли мы будем развивать ИИ в эту сторону. Кроме того, до создания интеллекта такого уровня еще далеко.

М. Ф.: Возможна ли система, которая сможет пройти тест Тьюринга, длящийся пару часов?

Дж. Х.: Вероятность появления чего-то подобного лет через десять достаточно велика. И возможно, мы до этого не доживем, так как человечество будет уничтожено другими вещами.

М. Ф.: Вы сейчас говорите о таких опасностях, как атомная война или чума?

Дж. Х.: Да, я считаю, что эти вещи угрожают существованию человечества намного сильнее, чем ИИ. Только представьте, что началась мировая война или недовольный аспирант в лаборатории молекулярной биологии создал чрезвычайно заразный смертельный вирус с длительным инкубационным периодом. Я думаю, что беспокоить должно именно это, а не сверхинтеллектуальные системы.

М. Ф.: Но, например, Демис Хассабис из компании DeepMind верит в возможность создания систем, которые вы считаете неосуществимыми.

Дж. Х.: У нас с Демисом разные взгляды на то, каким может быть будущее.

М. Ф.: Я бы все-таки хотел поговорить о связанных с ИИ опасностях. Например, о потенциальном влиянии на рынок труда и экономику. Нужно ли волноваться о наступлении новой промышленной революции?

Дж. Х.: Значительное повышение производительности – это прекрасно. Но его влияние на жизнь людей зависит от социальной системы. Почему проблемой считается именно технический прогресс? Проблема в том, сможем ли мы справедливо распределить блага.

М. Ф.: Но ведь проблема в данном случае связана с исчезновением рабочих мест по причине автоматизации. Может ли ее решить такая вещь, как базовый доход?

Дж. Х.: Да, эта идея кажется мне разумной.

М. Ф.: Но нужны ли для этого политические решения? Некоторые говорят, что можно пустить процесс на самотек и время само расставит все по местам.

Дж. Х.: Я переехал в Канаду, потому что здесь выше ставка налогообложения. С моей точки зрения справедливые налоги – это правильно. Правительство должно помогать всем, в то время как люди имеют право действовать исключительно в собственных интересах. Высокие налоги – один из механизмов, позволяющий реализовывать такую помощь. Кто-то богатеет, а остальные получают пособие из уплаченных им налогов. Но чтобы ИИ приносил пользу всем, предстоит проделать большую работу.

М. Ф.: А что вы скажете о применении ИИ в военных целях?

Дж. Х.: Я думаю, пришло время активности. Нужно сделать так, чтобы международное сообщество относилось к автономному оружию так же, как к химической войне и оружию массового уничтожения.

М. Ф.: Нужен ли мораторий на исследования и разработку оружия с ИИ?

Дж. Х.: Вы не получите моратория на исследования такого типа, точно так же как не было моратория на разработку нервно-паралитических отравляющих веществ. Правда, есть международные механизмы, которые помешали их широкому использованию.

М. Ф.: А что вы думаете о проблемах, связанных с приватностью и прозрачностью?

Дж. Х.: Манипуляция избирателями ради победы на выборах не может не вызывать беспокойства. Создатель компании Cambridge Analytica Боб Мерсер занимался машинным обучением. Компания уже принесла вред, об этом нельзя забывать.