Ф. Л.: Если посмотреть на прогресс науки в целом, вы увидите, что в прошлом то и дело приходилось отказываться от каких-то вещей и даже отступать назад. Невозможно быть уверенными, что не появится новая, более совершенная методика. Это особенно верно для такой молодой сферы, как ИИ. Ведь она существует всего 16 лет.
М. Ф.: Какие проекты сейчас можно причислить к передовым исследованиям в области ИИ?
Ф. Л.: Моя лаборатория сейчас работает над проектом Visual Genome. В ImageNet связаны изображения и метки, тогда как в реальности существуют взаимосвязи между объектами, а также между зрением и языком. Поэтому проект Visual Genome можно назвать следующим шагом после ImageNet. Мы ищем связь между визуальным миром и человеческим языком.
Еще одно направление, в котором ИИ принесет пользу, это здравоохранение. Человеческий фактор сильно влияет на медицину: низкое качество обслуживания, отсутствие контроля, ошибки, высокие затраты, предвзятое отношение к пожилым людям. По этой теме вообще крайне мало доступной информации. Около пяти лет назад мы поняли, что технология на базе ИИ, предназначенная для внедрения беспилотных автомобилей, подходит для оказания медицинской помощи. Систему с датчиками для сбора информации об обстановке в больницах и настроении пациентов, алгоритмами для анализа собранных данных и обратной связи мы внедряем в Детской больнице Люсиль Паккард в Стэнфорде, Медицинском центре Intermountain в Юте и домах престарелых в Сан-Франциско.
М. Ф.: Какие препятствия нужно преодолеть для создания сильного ИИ?
Ф. Л.: Для начала следует определиться с термином. Лично для меня это интеллект, понимающий контекст ситуации и все детали, многогранный и многомерный, обладающий способностью к обучению не только на больших объемах маркированных данных, но и обучению с подкреплением и даже обучению без учителя.
Если отталкиваться от этого определения, получится, что нужно искать алгоритмы, выходящие за пределы обучения с учителем. Необходимо сотрудничество с нейробиологами, когнитивными психологами и специалистами по бихевиоризму, так как многие связанные с ИИ технологии находятся на стыке различных наук. В марте 2018 г. в газете New York Times была опубликована моя статья на эту тему How to Make A.I. («Как создать ИИ»).
М. Ф.: Я читал статью. Вы выступали за комплексный подход к следующей фазе разработки ИИ.
Ф. Л.: Все дело в том, что ИИ уже вышел за пределы академической среды и начал влиять на жизнь людей. Поэтому при его разработке и внедрении следует учитывать человеческий фактор.
Разработка ИИ должна стать междисциплинарной и ориентированной на человека. Сейчас много говорится о роботах, берущих на себя рутинную работу, но у ИИ есть и другие возможности улучшить качество жизни людей. Мне кажется, нужно инвестировать в технологии, касающиеся сотрудничества и взаимодействия людей и машин: робототехнику, обработку естественного языка и т. п.
М. Ф.: Ник Бостром, Илон Маск и Стивен Хокинг много говорили об экзистенциальной угрозе, которую несет рекурсивное самосовершенствование. Есть мнение, что одним из шагов к этому может стать ваш проект AutoML, ведь вы используете технологии для проектирования других систем машинного обучения.
Ф. Л.: Это здорово, что такие лидеры, как Ник Бостром, предупреждают о вещах, которые могут повлиять на людей неожиданным образом. Но важно учитывать контекст. Ведь любой новый социальный порядок или технология, которые появлялись в прошлом, имели разрушительный характер. Поэтому все это полезно изучать с разных сторон. Ник говорит о потенциальном влиянии ИИ на человечество как философ. Но я думаю, что в эту дискуссию должны внести свое слово и представители других специальностей.
М. Ф.: Такие люди, как Илон Маск, нагнетают всеобщую озабоченность, например, утверждая, что ИИ опаснее, чем Северная Корея. Он преувеличивает или у нас действительно есть повод для беспокойства?
Ф. Л.: Обычно запоминаются именно преувеличенные высказывания. Лично я предпочитаю прислушиваться к точкам зрения, основанным на веских доказательствах и логических выводах. Мне кажется, куда важнее то, как мы поступаем с теми возможностями и проблемами, которые актуальны сейчас. Поэтому меня больше волнуют вопросы предвзятости и отсутствие многообразия в сфере ИИ.
М. Ф.: То есть вы считаете, что экзистенциальная угроза – это дело далекого будущего?
Ф. Л.: Именно так. Но хорошо, что есть люди, которые думают об этом уже сейчас.
М. Ф.: Вы упоминали, что ИИ способен улучшить качество жизни людей, но у бизнеса есть мотив для сокращения рабочей силы. Это происходило на протяжении всей истории. Появятся ли в скором времени инструменты, способные автоматизировать не только рутинную, но и интеллектуальную работу? С вашей точки зрения, грозит ли нам массовая безработица и снижение заработной платы?
Ф. Л.: Капитализм – это одна из форм общественного устройства, которая существует порядка ста лет. И она не единственная. Предсказать, как технологии преобразуют наше общество, невозможно.
Говоря об улучшении жизни благодаря ИИ, я имею в виду увеличение продуктивности работы. За пять лет сотрудничества с врачами я убедилась, что часть их работы потенциально может выполняться машинами, освобождая их время для общения с пациентами и исследовательской работы, необходимой в случае редких или тяжелых заболеваний.
Технология ИИ обладает огромным потенциалом для совершенствования рабочей силы. Вспомните историю. Около 40 лет назад из-за появления компьютеров ушла в прошлое профессия машинистки. Но появились новые рабочие места. Теперь у нас есть инженеры-программисты. И это более интересная и творческая работа. А когда появились банкоматы и автоматизировали часть транзакций, в банке увеличилось количество служащих, так как возросло число доступных пользователям финансовых услуг.
М. Ф.: Вы много занимаетесь вопросами многообразия и предвзятости. Мне кажется, что эти вещи никак не пересекаются. Предвзятость может быть заложена в сгенерированных людьми данных, на которых обучаются алгоритмы, тогда как многообразие – больше кадровый вопрос.
Ф. Л.: Эти темы не настолько далеки друг от друга, как вы думаете. Они связаны с ценностями, которые люди передают машинам. Многие ученые в сфере ИИ признают это явление и модифицируют алгоритмы, чтобы они имели возможность распознать такое смещение данных как предвзятость и исправить его.
М. Ф.: Каким образом в Google работают со смещениями данных для машинного обучения?
Ф. Л.: В Google над этим работает целая команда, поскольку существует ориентация на качество продукта. Я надеюсь, что в эту область будут делаться инвестиции. Что же касается темы многообразия и предвзятости людей… Это большая проблема, особенно в областях, связанных с точными науками. Посмотрите на специалистов в сфере ИИ – команды в компаниях, профессоров в академических кругах, аспирантов или докладчиков на ведущих конференциях: среди них очень мало женщин и представителей меньшинств.
М. Ф.: Расскажите о своем проекте AI4ALL, направленном на привлечение в связанные с ИИ сферы женщин и представителей меньшинств.
Ф. Л.: Именно недостаток многообразия четыре года назад побудил меня начать проект AI4ALL. Мы ориентируем старшеклассников в выборе профессии, и особенно нас интересуют представители меньшинств, потому что технология коснется всех. Это летняя учебная программа знакомства с ИИ. Инициатива имела такой успех, что в 2017 г. появилась национальная некоммерческая организация AI4ALL, к участию в которой стали приглашаться другие университеты.
Сейчас их шесть. Университет Беркли, например, предлагает программы для студентов с низким доходом, Принстонский университет специализируется на программах для расовых меньшинств, Университет Кристофера Ньюпорта разрабатывает программы для трудных подростков, а Бостонский университет предлагает программы для девушек. Со временем мы надеемся на расширение.
М. Ф.: Как вы считаете, должно ли правительство взять в свои руки разработку правил для сферы ИИ, или профессиональное сообщество может самостоятельно решать возникающие проблемы?
Ф. Л.: Не думаю, что специалисты по ИИ смогут обеспечить общее благо. В нашем мире все тесно связано, и все мы зависим друг от друга. Я, будучи профессором, езжу по общим дорогам, дышу тем же воздухом и отправляю детей в школы. В работе над ИИ должны учитываться все сферы жизни. Правительство тоже играет огромную роль, инвестируя в фундаментальную науку, исследования и образование в области ИИ. Если нам нужна прозрачная и честная технология, если мы хотим, чтобы больше людей ее понимали и могли влиять на нее положительным образом, тогда помощь правительства необходима.
М. Ф.: Как вы относитесь к гонке вооружений в сфере ИИ? Например, Китай за счет авторитарной системы и численности населения располагает большим объемом данных при меньшей степени конфиденциальности. Рискуем ли мы утратить свое лидерство в разработках ИИ?
Ф. Л.: В настоящее время достигнуты большие успехи в физике, и эти успехи влияют на развитие различных технологий. Кому принадлежит современная физика? Я считаю, что стремление человека к знаниям и истине не имеет границ.
Разумеется, конкуренция между компаниями и регионами существует, но я надеюсь, что и она во благо. Здоровая конкуренция означает уважение к соперникам, пользователям, рынку и законам. Я готова сотрудничать с людьми любого происхождения.
Демис Хассабис
“Работа над играми – это тренировка. Игры не являются конечной целью; мы хотим построить общие алгоритмы, которые можно будет применять к реальным задачам".
Соучредитель и генеральный директор компании DEEPMIND
Шахматный вундеркинд Демис Хассабис начал профессионально программировать и разрабатывать видеоигры в 16 лет. После окончания Кембриджского университета 10 лет основывал успешные стартапы, ориентированные на создание видеоигр и симуляций, основал компанию по производству видеоигр Elixir Studios. После получения докторской степени по когнитивной нейробиологии в Университетском колледже Лондона работал в MIT и Гарварде. Его исследование механизмов, лежащих в основе воображения и планирования, вошло в десятку лучших научных достижений 2007 г. по версии журнала Science.