Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей — страница 27 из 63

М. Ф.: Могут ли ваши технологии помочь в таких областях, как психологическое консультирование?

Р. К.: Я считаю, что у наших технологий больше перспективы в сфере здравоохранения. Например, известно, что существуют лицевые и голосовые биомаркеры депрессии и признаки, по которым можно предсказать суицидальные намерения. Если учесть, сколько времени люди проводят перед различными устройствами, понятно, что мы можем собрать объективные данные.

В настоящее время диагностика сводится к тому, что человека просят оценить по шкале от 1 до 10, насколько он подавлен. Мы же даем возможность построить базовую модель для оценки психического здоровья. Если состояние человека начнет отклоняться от базовых показателей, система может подать сигнал самому человеку, членам его семьи или даже медицинскому работнику.

Эти метрики применимы и для анализа эффективности различных методов лечения. Например, человек пробует методы когнитивно-поведенческой терапии или начинает принимать препараты, а система количественно определяет эффективность применяемого лечения.

М. Ф.: Насколько этичными вы считаете свои разработки? Представьте, что ваша система используется во время переговоров для тайного наблюдения за оппонентами. Получаемая при этом информация создает несправедливое преимущество.

Р. К.: Вопрос о границах мы с Розалинд и нашим первым сотрудником обсуждали перед началом тестирования. Эмоции – это личные данные, поэтому мы договорились, что действовать можно только в тех случаях, когда люди прямо соглашаются ими поделиться.

В 2011 г. мы столкнулись с недостатком средств, и можно было получить финансирование от охранного агентства, которое имело венчурное подразделение. Они хотели использовать наши технологии для наблюдения и обеспечения безопасности. По большей части люди осведомлены, что в аэропортах за ними следят, но все равно мы отклонили это предложение, так как чувствовали, что оно противоречит нашему основополагающему принципу.

Один и тот же инструмент может как принести пользу, так и создать эффект присутствия Большого Брата. Но если бы сотрудники какой-то фирмы согласились на установку наблюдения, работодатель смог бы оценить уровень комфорта на рабочем месте.

Если руководитель проводит онлайн-презентацию, то с помощью технологий может дистанционно оценить уровень мотивации сотрудников к работе над новой задачей. Но оценка внимания при прослушивании презентации повлияет на личные границы человека.

Одна из версий нашей технологии умеет отслеживать ход встреч и в конце давать всем участникам обратную связь. То есть человек может услышать, к примеру: «Вы 30 минут говорили о пустяках и проявили враждебность к коллеге N, нужно быть более вдумчивым и чутким». Легко представить, как с помощью этой технологии коуч учит персонал лучше вести переговоры. Но также легко воспользоваться ею, чтобы навредить чужой карьере.

Мы предпочитаем давать людям обратную связь для развития социальных навыков и эмоционального интеллекта.

М. Ф.: В своей работе вы активно используете глубокое обучение. Но говорят, что прогресс в этой области замедлился и даже может совсем остановиться. Вы согласны с необходимостью искать другие подходы?

Р. К.: Работая над докторской диссертацией, для количественной оценки и построения классификаторов я использовала динамические байесовские сети. Пару лет назад на глубоком обучении начала базироваться вся наша инфраструктура, что принесло многочисленные плоды.

Я бы сказал, что максимальные результаты, которые может дать глубокое обучение, еще не достигнуты. Увеличение количества данных в сочетании с глубокими нейронными сетями позволяет проводить точный и достоверный анализ в самых разных ситуациях.

Но при этом, конечно, всех существующих потребностей глубокое обучение не удовлетворяет, и требуются другие методы и подходы.

М. Ф.: Что, с вашей точки зрения, мешает созданию сильного ИИ? Ожидаете ли вы увидеть его при жизни?

Р. К.: До создания сильного ИИ еще очень далеко, ведь все существующие примеры ИИ имеют достаточно узкое применение. Современные ИИ-приложения прекрасно справляются с конкретными задачами, для решения которых они создавались, но при этом все они требуют начальной загрузки, определенных допущений и помощи людей. Самая лучшая система обработки естественного языка не может пройти тест, с которым справляются школьники.

М. Ф.: Вы пытаетесь научить машины понимать эмоции, а должны ли машины их демонстрировать?

Р. К.: Над машинами, проявляющими эмоции, мы тоже работаем. Компания Affectiva разработала платформу для восприятия эмоций, которую многие наши партнеры применяют для управления поведением машин. В качестве входных данных берутся человеческие метрики. Ответы робота зависят от действий человека. По такому принципу работает, к примеру, виртуальный помощник Alexa от Amazon.

Когда, например, Alexa раз за разом ошибается, делая заказ по вашей просьбе, это раздражает. Но вместо того чтобы просто игнорировать этот момент, помощник может сказать: «Прошу прощения. Я понимаю, что ошибаюсь. Разрешите мне попробовать еще раз». То есть устройство учитывает раздражение пользователя и соответствующим образом корректирует свои действия. Робота можно запрограммировать на движения, показывающие, что он сожалеет о сделанной ошибке. Разумеется, все это не означает, что устройства на самом деле испытывают эмоции. Но пользователям это и не нужно.

М. Ф.: Как появление ИИ может повлиять на экономическую ситуацию и рынок труда? Стоит ли волноваться по поводу грядущей массовой безработицы?

Р. К.: Я предпочитаю думать о партнерском взаимодействии человека и технологий. Конечно, часть рабочих мест исчезнет, но в истории человечества такое случалось часто. На смену им приходили новые рабочие места и новые возможности. Подозреваю, что могут появиться специальности, которых мы сейчас не можем даже представить. Не думаю, что мы окажемся в мире, где всю работу возьмут на себя роботы, а люди будут просто отдыхать. Мое детство на Ближнем Востоке пришлось на время первой войны в Персидском заливе, я понимаю, что в мире множество проблем, и не верю, что появится машина, которая все решит. Для людей всегда останется работа.

М. Ф.: Мне кажется, что благодаря вашим разработкам можно автоматизировать выполнение работы, связанной с общением и наличием эмоционального интеллекта.

Р. К.: Да, вы правы. Например, в Affectiva разрабатываются виртуальные медсестры и роботы, помогающие неизлечимо больным пациентам. Я сомневаюсь, что они смогут заменить человека, но, скорее всего, набор рабочих обязанностей медсестры со временем изменится.

Когда робот при обнаружении невыполнимой задачи привлекает медсестру-человека, растет количество пациентов, которые одновременно могут получать помощь. Аналогичная ситуация с учителями. Такие разработки полезны в ситуации нехватки персонала.

Мне кажется, что профессия водителя грузовика тоже исчезнет лет через десять. Достаточно будет одного оператора, который сидит перед экраном и управляет сотней автомобилей. Но при этом останется и работа для людей-водителей, которые могут при необходимости брать на себя контроль над одной из машин.

М. Ф.: Что вы думаете об экзистенциальных рисках, которые несут обычный и сильный ИИ, и предупреждениях Илона Маска?

Р. К.: В интернете можно найти документальный фильм «Доверяете ли вы этому компьютеру?», создание которого частично финансировал Илон Маск. Там я подробно высказалась на эту тему.

М. Ф.: Да, я смотрел его. В нем участвуют и другие ученые, у которых я брал интервью для этой книги.

Р. К.: Я убеждена, что люди приносят куда больше проблем, чем ИИ. Всерьез бояться захвата власти роботами – значит признать бессилие людей. Нельзя забывать, что именно мы проектируем эти системы, знаем, как они функционируют, и можем их отключить. Поэтому я не разделяю подобных страхов. С ИИ-системами связаны более актуальные проблемы. Например, как избежать закрепления существующих предрассудков?

М. Ф.: Вы считаете предвзятость одной из наиболее актуальных проблем?

Р. К.: Да. Технология развивается очень быстро, но мы не до конца понимаем, чему именно мы учим нейронные сети. Я боюсь, что мы просто закрепляем в них все существующие в обществе предубеждения.

М. Ф.: Получается, что предвзятость закладывается на уровне данных.

Р. К.: Важны и сами данные, и то, как мы их применяем. Поэтому в Affectiva мы стараемся убедиться в том, что для обучения алгоритмов берутся данные, репрезентативные для всех этнических групп, сбалансированные с гендерной и возрастной точки зрения. Это непрекращающаяся работа, ведь для защиты от смещений всегда можно сделать больше.

М. Ф.: Бороться с необъективностью людей очень сложно, и, наверное, проще убирать ее проявления из алгоритмов, чтобы в будущем сами алгоритмы помогали уменьшить количество предвзятости и дискриминации в мире.

Р. К.: Именно так. Я даже могу привести отличный пример. Компания HireVue использует нашу технологию для процедуры найма. Кандидаты присылают видеоинтервью, и система сортирует их, применяя комбинацию наших алгоритмов и классификаторов обработки естественного языка. При этом учитываются не только ответы на вопросы, но и невербальные сигналы. Алгоритм не обращает внимания на половую и этническую принадлежность.

Результаты применения цифровой платформы для проведения собеседований в компании Unilever показали не только сокращение времени найма на 90 %, но и увеличение многообразия нанятых сотрудников на 16 %. Мне кажется, это очень впечатляющий результат.

М. Ф.: Нужно ли регулирование в сфере ИИ? Вы говорили, что у компании Affectiva очень высокие этические стандарты, но кто-то может разработать аналогичные технологии и продать их, например, для тайного наблюдения за людьми.