В Google мы сильно продвинулись в работе над естественным языком. Язык создается и понимается неокортексом. Он иерархичен, благодаря чему мы можем делиться друг с другом возникающими в неокортексе идеями. Я думаю, что тест Тьюринга проводится на естественном языке, потому что в понимании речи задействован весь спектр человеческого мышления и интеллекта.
М. Ф.: Ваша конечная цель – создать машину, способную пройти тест Тьюринга?
Р. К.: Мою точку зрения многие не разделяют, но я считаю, что правильно подготовленный тест Тьюринга действительно позволяет проверить, обладает ли сущность интеллектом на уровне человека. Проблема в том, что в кратком документе 1950 г. Тьюринг не описал процедуру тестирования. Я поспорил с Митчем Капором на 20 тысяч долларов, что ИИ пройдет тест Тьюринга к 2029 г. Победитель отдаст выигрыш на благотворительные нужды.
М. Ф.: Но согласитесь, что эффективным тест Тьюринга станет только после снятия ограничения по времени. В течение 15 минут не так уж сложно водить экзаменатора за нос.
Р. К.: Вы совершенно правы. Согласно правилам, которые придумали мы с Митчем, тест занимает несколько часов, и даже этого может оказаться недостаточно. Машина должна убедить экзаменатора, что она – человек. Такую иллюзию вполне можно создать с помощью несложных уловок.
М. Ф.: Тест покажет, что машина обладает интеллектом, не найдя в ней сходство с человеком.
Р. К.: Киты и осьминоги проявляют интеллектуальное поведение, но никогда не смогут пройти тест Тьюринга. Китаец, который не говорит по-английски, тоже не пройдет. Невозможность пройти тест не указывает на отсутствие развитого интеллекта, но чтобы его пройти, нужно обладать развитым интеллектом.
М. Ф.: Вы верите в то, что комбинация глубокого обучения и вашего иерархического подхода позволяет двигаться в сторону сильного ИИ или для этого нужен какой-то сдвиг парадигмы?
Р. К.: Я думаю, что люди используют именно иерархический подход. Каждый из модулей способен обучаться, и в книге я подчеркиваю, что в человеческом мозге происходит не глубокое обучение, а какой-то эквивалент марковского процесса. При этом глубокое обучение результативно. В системах Google мы с его помощью создаем векторы, представляющие собой шаблоны для каждого модуля иерархии, а затем начинается сама иерархия, которая в парадигму глубокого обучения уже не вписывается. Я думаю, что для сильного ИИ этого достаточно. На мой взгляд, иерархический подход отражает процессы, которые протекают в мозге человека, и проекты по реверсивному воспроизведению мозга это подтверждают.
Существуют доказательства того, что мозг использует систему, основанную на правилах, а не ту, что предлагают коннекционисты. Именно поэтому люди способны четко отличать вещи друг от друга и логически мыслить. При этом коннекционистская система в определенных ситуациях настолько уверена в своих суждениях, что действует как система, основанная на правилах, и при этом справляется с исключениями и нюансами.
Обратное при этом неверно. Система, основанная на правилах, не может эмулировать коннекционистскую систему. Проект Cyc (читается «сайк») Дугласа Лената очень впечатляет, но, на мой взгляд, он страдает от ограничений системы, основанной на правилах. В какой-то момент неизбежно достигается предел сложности. То есть правила становятся настолько сложными, что при попытке исправить одну вещь ломаются три другие.
М. Ф.: Cyc – это проект, в котором люди вручную вводят логические правила?
Р. К.: Да. Точных цифр я не знаю, но количество правил там огромно. В одном из режимов можно распечатывать рассуждения, обосновывающие поведение. Обычно они занимают несколько страниц, и уследить за их ходом сложно. Это хороший проект, но человеческий интеллект формируется как-то по-другому. Вместо каскадов правил люди используют самоорганизующуюся иерархию.
Преимуществом коннекционистского подхода я считаю и то, что он прозрачен. Можно посмотреть на модули в иерархии и увидеть, на какие решения влияет каждый из них. А состоящие из 100 слоев нейронные сети действуют как большой «черный ящик». Понять ход происходящих внутри рассуждений крайне сложно, хотя некоторые пытались.
М. Ф.: В человеческом мозге с рождения присутствуют определенные структуры, например, позволяющие новорожденным распознавать лица.
Р. К.: У нас есть генераторы функций. Веретенообразная извилина умеет вычислять соотношения: длину носа или расстояние между глазами. Существует примерно дюжина простых функций, которые мы можем сгенерировать на основе изображения лица, а затем распознать то же самое лицо на новом изображении, даже если какие-то детали изменились. Другие функции аналогичным образом работают с аудиоинформацией, то есть вычисляют определенные отношения и распознают частичные обертоны. Затем эти функции поступают в коннекционистскую иерархическую систему.
М. Ф.: Расскажите, пожалуйста, о перспективах создания сильного ИИ или интеллекта уровня человека.
Р. К.: Это синонимы, но термин «сильный ИИ» мне не нравится. Разработки ИИ с самого начала ставили целью достижение человеческого уровня интеллекта. Но постепенно начали формироваться отдельные области, исчезла концентрация на сильном ИИ. Но я считаю, что, решая отдельные задачи, мы постепенно дойдем и до него.
Не стоит забывать и о разнице в уровне навыков при выполнении одной и той же задачи. Насколько хорошо люди играют в го? Как только компьютер достигает хотя бы нижнего уровня способностей человека, он очень быстро может превзойти способности чемпиона.
Компьютеры пока не могут хорошо работать с несколькими цепочками рассуждений, делая выводы из нескольких утверждений и одновременно применяя свои знания об окружающем мире. Например, в тесте на знание языка для третьего класса компьютер не понимал, что у мальчика грязные ботинки из-за ходьбы по лужам, и следы на полу рассердят его мать. ИИ не обладает тем опытом, который делает для нас многие вещи очевидными.
Сейчас в ряде языковых тестов компьютеры демонстрируют среднестатистический уровень понимания взрослого человека. И быстрого прогресса в этой области не будет, потому что сначала нужно решить более фундаментальные проблемы. Но даже достигнутый уровень впечатляет, потому что для понимания языка требуется и высокий интеллект, и умение распознавать переносные смыслы, и иерархическое мышление. Подводя итог, скажу, что да, используя коннекционистские подходы, мы делаем успехи.
Моя рабочая группа нацелена на прохождение теста Тьюринга. Научить компьютеры учитывать выводы и подтексты различных концепций, то есть вести несколько цепочек рассуждений одновременно – это первоочередная задача. Именно тут чат-боты обычно терпят неудачу. Если я скажу, что переживаю из-за школьных оценок дочери, ни один человек не спросит через три хода, есть ли у меня дети. А чат-боты задают такие вопросы. Но если мы научим их понимать все оттенки языка, виртуальные собеседники смогут извлекать все нужные сведения из доступных в интернете книг и документов. У нас уже есть идеи, как реализовать подобные вещи.
М. Ф.: Долгое время вы утверждали, что сильный ИИ будет создан к 2029 г. Вы до сих пор так считаете?
Р. К.: В книге The Age of Intelligent Machines («Эпоха мыслящих машин», 1989 г.) я писал о 2029 г. плюс-минус 10 лет. В 1999 г. я опубликовал книгу The Age of Spiritual Machines («Эпоха чувствующих машин»), в которой четче обозначил 2029 г. По этому поводу в Стэнфорде прошла конференция экспертов по ИИ. В основном все пришли к мнению, что на это потребуются сотни лет, а примерно четверть присутствовавших считали, что этого не произойдет никогда.
В 2006 г. в Дартмутском колледже состоялась конференция, посвященная 50-летию Дартмутского семинара. Проведенный там опрос показал, что создание сильного ИИ ожидается где-то лет через пятьдесят. В 2018 г. основная масса специалистов называла срок в 20–30 лет. Получается, что я просто более оптимистичен.
М. Ф.: До названной вами даты осталось всего 11 лет. Это совсем немного.
Р. К.: Прогресс идет по экспоненте. Мы уже добились значительных успехов в области беспилотных автомобилей, понимании языка, игре го и во множестве других сфер. Аппаратное и программное обеспечение развиваются в быстром темпе, причем первое – активнее.
М. Ф.: Мнение, что потребуется более ста лет, означает, что люди считают прогресс линейным?
Р. К.: Во-первых, они мыслят линейно, а во-вторых, подвержены явлению, которое я называю пессимизмом инженера. Они так сосредоточены на одной сложной проблеме, что начинают считать себя полностью ответственными за ее решение и отталкиваются исключительно от собственных темпов работы. Учитывать темпы прогресса в области в целом и то, как идеи взаимодействуют друг с другом, нужно уметь.
Для проекта по определению генома человека 1 % данных собирали семь лет. Скептики тогда называли проект безнадежным, ведь при таких темпах на его реализацию потребовалось бы 700 лет. Я же считал, что работа почти закончена. Потому что каждый год темп ускорялся в два раза, и проект был завершен семь лет спустя.
Независимо от достижений или уровня интеллекта обычный пользователь или специалист могут держаться за линейное мышление.
М. Ф.: Но согласитесь, что речь идет не только об экспоненциальном росте скорости вычислений или объема памяти. Нужны концептуальные прорывы, в результате которых компьютеры получат способность, например, обучаться в реальном времени или на неструктурированных данных, как это делают люди.
Р. К.: Программное обеспечение также экспоненциально прогрессирует, несмотря на не поддающиеся прогнозированию вещи, которые вы упомянули. Существует взаимообогащение, благодаря которому после достижения некоторого уровня производительности появляются идеи для движения дальше.
Научно-экспертный совет администрации Обамы исследовал этот вопрос. Они взяли дюжину классических инженерных и технических проблем и изучили, насколько прогресс связан с оборудованием. В течение предыдущих 10 лет это соотношение, как правило, составляло примерно тысячу к одному. Значит, показатель «цена/производительность» удваивался ежегодно. Ситуация с программным обеспечением варьировалась, но в каждом случае показатель для него был больше, чем для аппаратного обеспечения. Развитие программного обеспечения происходит нелинейно; это геометрическая прогрессия. А для оценки прогресса в целом нужно перемножить показатели прогресса в областях аппаратного и программного обеспечения.