Но когда человек говорит: «Я считаю, что следующим в этом наборе чисел должно быть число 5, потому что…», у него появляется логическая или причинная модель. Это уже совсем другой, гораздо более полезный вид информации, потому что появляется возможность аргументированно возразить: «Вот здесь твои рассуждения ошибочны, потому что…». Подобное невозможно в ответ на заявление: «Это просто моя интуиция, основанная на данных. Доверься мне».
Мы сталкиваемся с дилеммой, противопоставляя эти два вида интеллектуальной обработки данных. Ту, которая связана с построением объяснимой модели, доступной для осмотра, обсуждения и совершенствования, и ту, которая утверждает: «Я считаю так, потому что…». Полезны и необходимы оба вида. Мир под управлением машин, которые не могут объяснить ход своих рассуждений, мне не нравится.
М. Ф.: Но многие считают, что для движения вперед достаточно глубокого обучения, которое соответствует второй из описанных вами моделей. Вы же, как я понимаю, говорите о необходимости других подходов.
Д. Ф.: Я не фанатик какого-то единственного подхода. Глубокое обучение и нейронные сети успешно обнаруживают нелинейные, очень сложные зависимости в больших объемах данных. Поведение сложных систем зачастую описывается функциями многих переменных, которые могут иметь разрывы во многих измерениях.
Системе глубокого обучения можно предоставить огромный объем необработанных данных, и она найдет сложную функцию, но изучать ее в итоге придется вам. Вы можете, конечно, возразить, что любая форма интеллектуальной обработки данных, по сути, сводится к изучению функций. Но если вы не попытаетесь найти функцию, которая реализует сам человеческий интеллект, вы не поймете, почему система дает именно такие ответы.
Можно ли обучить нейронную сеть на данных, присваивающих каждому английскому рассказу его значение? Возможно, да. Но такие данные у нас отсутствуют, и мы не знаем, как изучать их с точки зрения сложности функции. Я не знаю, как при современном состоянии нейронных сетей должна выглядеть методология получения такой информации. Кое-какие идеи у меня, конечно, имеются. И для этого я использую и нейронные сети, и другие методы машинного обучения как часть комплексной архитектуры.
М. Ф.: В документальном фильме «Доверяете ли вы этому компьютеру?» вы сказали, что через три-пять лет появится компьютерная система, которая найдет общий язык с человеком. Каким образом?
Д. Ф.: Это, конечно, нереалистичный срок, но, мне кажется, такие технологии вполне могут появиться в течение следующего десятилетия. Я думаю, что быстрый прогресс начнется в таких аспектах, как восприятие и контроль. Это сильно повлияет на общество, рынок труда, национальную безопасность и производительность. Третий аспект – понимание – при этом даже не будет затронут, но это позволит привлекать людей к решению задач, связанных с языком и мышлением.
Называя срок от трех до пяти лет, я имел в виду, что рабочие идеи у нас уже есть, просто нужны инвестиции в определенные разработки. Если бы я не знал способа достичь сильного ИИ, оценка срока была бы совсем другой. Пока деньги по большей части вкладываются в машинное обучение из-за быстрой окупаемости. Я же пытаюсь привлекать инвестиции в технологию, которая позволит развить понимание. В отличие от других, я не считаю, что для достижения сильного ИИ нужно ждать какого-то огромного прорыва. Думаю, мы уже знаем, как действовать, просто нужно доказать эффективность этого пути.
М. Ф.: То есть компания Elemental Cognition занимается вопросами сильного ИИ?
Д. Ф.: Мы работаем над созданием естественного интеллекта, способного автономно обучаться, читать и понимать, и таким способом мы хотим получить ИИ, умеющий свободно общаться с людьми.
М. Ф.: Мне известна всего одна компания, которая также занимается этой проблемой – DeepMind. Поразительно, насколько разные подходы вы применяете. В DeepMind ориентируются на глубокое обучение с подкреплением в играх и симуляциях, а от вас я слышу, что путь к интеллекту лежит через язык.
Д. Ф.: Я бы немного переформулировал нашу цель. Мы хотим создать интеллект, основанный на логике, языке и разуме, совместимый с человеческим. Другими словами, мы работаем над системой, умеющей обрабатывать язык, как это делают люди. Помимо нейронных сетей мы применяем длинный диалог, формальные рассуждения и формальные логические представления. Для вещей, которые невозможно эффективно изучать с помощью нейронных сетей, мы находим другие способы работы.
М. Ф.: Если я правильно помню, еще вы работаете над обучением без учителя, которое, как мне кажется, повлияет на реальный прогресс в сфере ИИ.
Д. Ф.: Мы применяем оба варианта обучения. Например, используем обучение без учителя на больших текстах, а обучение с учителем – на аннотированных информационных материалах.
М. Ф.: Ждет ли нас в ближайшем будущем экономический спад с массовой потерей рабочих мест?
Д. Ф.: Не знаю, ждут ли нас такие же драматические события, как после промышленной революции, но мне кажется, что ИИ несет с собой не менее резкие перемены. Многие столкнутся с необходимостью переквалификации. Переход будет болезненным, но, в конце концов, он может привести к появлению еще большего числа рабочих мест. Потому что работы меньше не станет, изменится только ее характер.
М. Ф.: А как быть с проблемой несоответствия навыков?
Д. Ф.: Разумеется, новые рабочие места будут недоступны людям без специальной подготовки. Но я уверен, что появится и много других рабочих мест, например, в сфере здравоохранения, таких, в которых важен аспект общения с людьми.
Мы считаем, что в будущем нас ждет тесное и свободное партнерство людей и машинного интеллекта. Людям не нужно будет долго учиться, чтобы получить доступ к знаниям и эффективно их применять. Компьютеры же в рамках этого сотрудничества смогут лучше нас понять. Мы хотим, чтобы компьютеры стали совместимы с людьми, так почему бы не заплатить тем, кто поможет достичь этой цели? Экономика взаимодействия людей с машинами очень интересная тема, но нас ждет длинный переходный период.
М. Ф.: Как вы относитесь к опасностям, которые, если верить Илону Маску и Нику Бострому, несет в себе суперинтеллект?
Д. Ф.: Я думаю, что каждый раз, когда мы даем машинам какие-то рычаги влияния, появляется множество причин для беспокойства. Любая ошибка компьютера, контролирующего электрические сети, системы вооружения или беспилотные автомобили, может спровоцировать серьезную катастрофу. Ситуация становится еще более серьезной в случае проблем с компьютерной безопасностью. Об этом все время следует помнить. Тем более что с помощью компьютеров мы контролируем все больше и больше важных сфер, таких как транспорт, питание и национальная безопасность. Это пока еще не ИИ, но все подобные системы следует проектировать очень тщательно и продумывая возможные точки отказа.
Ник Бостром любит пугать публику, описывая, как у машины вдруг появляются какие-то собственные цели, для достижения которых она уничтожает человечество. Меня подобные прогнозы не беспокоят, потому что машину нужно сначала запрограммировать для такой реакции. Зачем ставить машину, предназначенную для производства скрепок, контролировать электрическую сеть? У нас слишком много более актуальных проблем, чтобы беспокоиться о гипотетической ситуации, когда у ИИ внезапно возникнут собственные желания и цели и он решит пожертвовать человеческой расой, чтобы сделать больше скрепок.
М. Ф.: Должно ли правительство регулировать сферу ИИ?
Д. Ф.: Раз уж машины могут принимать решения, влияющие на нашу жизнь, нужно четко определить, кто за что отвечает. Люди, на жизнь которых влияют принимаемые машинами решения, имеют право знать их мотивы. Правительство должно вмешиваться и прояснять, кто отвечает за происходящее и на что могут рассчитывать люди в случае правовых отношений с машиной.
Кроме того, нужно выработать критерии проектирования воздействующих на людей систем. Потому что в этом случае любые ошибки или взлом могут сильно повлиять на общество. Нужен вариант, не замедляющий развития технологий и одновременно контролирующий развертывание подобных систем. Требуется регулирование и на рынке труда.
М. Ф.: После вашего ухода компания IBM создала крупное бизнес-подразделение для работы с суперкомпьютером Watson, которое с переменным успехом пыталось извлекать прибыль из этого проекта. Что вы думаете об их опыте и проблемах, с которыми они столкнулись?
Д. Ф.: Я не знаю, что там происходит в настоящее время, но думаю, что если они хотели использовать суперкомпьютер Watson как бренд для входа в ИИ-индустрию, они получили такую возможность.
С точки зрения бизнеса положение IBM уникально. Они могут выйти на рынок, предлагая бизнес-аналитику, анализ данных и оптимизацию. И обеспечить целевое значение, например, в медицинских приложениях.
Трудно измерить, насколько успешными оказались их попытки получить прибыль как ИИ-компания. Оценка в данном случае зависит от бизнес-стратегии и от того, что вы считаете ИИ. Сейчас в центре внимания потребителей виртуальные помощники Siri и Alexa. Насколько велика их ценность для бизнеса, я не знаю.
М. Ф.: Беспокоит ли вас преимущество в сфере ИИ, которое может получить Китай за счет количества открытых данных? Нужна ли промышленная политика для поддержания конкурентоспособности?
Д. Ф.: Я думаю, что гонка вооружений имеет место, и ее результаты повлияют на производительность, рынок труда, национальную безопасность и потребительские рынки. Чтобы оставаться конкурентоспособными, нужно инвестировать в ИИ, привлекать и поддерживать таланты.
И вот тут важно сохранить непростой баланс между мерами поддержания конкурентоспособности, мерами контроля и регулирования и вопросами конфиденциальности. Мне кажется, что для оптимального решения в такой ситуации нужны более вдумчивые и знающие лидеры. Чем выше будет их осведомленность в сфере ИИ, тем лучше. Может быть, для решения этих проблем нам потребуется ИИ!