ваты химики, а не сами химические соединения. Лично я ничего не имею против химических веществ. Ведь из них состоят и мои любимые звезды, и мои лучшие друзья среди людей.
8Почему мир круглый
Каждый раз, когда я откусываю от гамбургера, мне на ум приходит планета Сатурн. В самой еде нет ничего специфически планетaрного. Но форма гамбургера и особенно верхняя булочка выглядят космически. Они напоминают мне о том, как Вселенная любит идеально круглые шары – сферы и как эти круглые объекты меняются, когда вращаются.
Возьмем тот же Сатурн. Эта огромная планета вертится гораздо быстрее Земли. Наши сутки продолжаются двадцать четыре часа – любая точка нашей планеты, например хоть та, в которой вы сейчас сидите или стоите, совершает один полный оборот вокруг земной оси ровно за это время. Если вы находитесь на экваторе Земли, на ее, так сказать, талии, то, вращаясь вместе с Землей, вы за каждый час пролетаете 1000 миль. На первый взгляд это довольно большая скорость. Пассажирский лайнер летит со скоростью около 550 миль в час. Но все это ерунда по сравнению с Сатурном. На моей второй любимой планете сутки, то есть один ее полный оборот, длятся всего десять с половиной часов. А Сатурн ведь гораздо, гораздо больше Земли. И, чтобы успеть совершить за это время полный оборот, экватор Сатурна вращается со скоростью в 22 000 миль в час.
Если бы с такой скоростью вертелась наша планета, ваш школьный день продолжался бы минут двадцать. Правда, и каникулы были бы покороче, а главное, нас и вообще на Земле бы не оказалось.
Посмотрите на Сатурн, мою вторую любимую планету! Сутки на Сатурне длятся всего десять с половиной часов.
Объекты, которые быстро вращаются, имеют свойство сплющиваться. Земля, например, не является идеальной сферой. Наша планета вертится вокруг воображаемой оси, проходящей через точки Северного и Южного полюсов. Расстояние от одного полюса до другого вдоль этой линии короче, чем расстояние между противоположными точками на земном экваторе. Другими словами, Земля немного сплющена у полюсов.
И эта сплюснутость действительно небольшая: разность экваториального и полярного радиусов Земли составляет всего около 26 миль.
Если бы Земля вращалась всего в шестнадцать раз быстрее, то центробежная сила, та же сила, которая толкает вас наружу, когда вы катаетесь на карусели, или удерживает воду в ведре, если вы вертите его вокруг себя на вытянутой руке, сделала бы все тела на экваторе невесомыми. Даже теперь, при нынешней скорости вращения Земли, Дед Мороз весил бы примерно на фунт меньше на экваторе, чем на Северном полюсе, где центробежные силы не действуют. В отпуске все хотят чувствовать себя более стройными, так что, если вы хотите узнать, где Дед Мороз проводит свои летние каникулы, я бы посоветовал искать его именно там.
Чем быстрее объект вертится, тем более сплюснутым становится. Вернемся к нашим гамбургерам. Раз Сатурн вращается со скоростью 22 000 миль в час, получается, что эта планета между полюсами сплюснута на добрых 10 % по сравнению с ее экваториальным диаметром. Такая разность диаметров заметна даже в маленький любительский телескоп. Вот и выходит, что Сатурн мало похож на идеальную сферу, а больше – на бургер, широкий посредине и сплюснутый сверху.
Вселенная любит сферы. Если не считать кристаллов и обломков камней, в космосе очень немногие тела имеют острые кромки. У многих объектов очень странная форма, но список круглых тел практически бесконечен: от мыльных пузырей до галактик и далее.
Сплющенная сфера называется эллипсоидом вращения. Земля – эллипсоид вращения, и Сатурн тоже.
Физические законы, которые управляют Вселенной, благоприятствуют сферам больше, чем другим формам. Возьмем, к примеру, поверхностное натяжение. Эта сила стягивает вещество на поверхности объекта. Рассмотрим мыльный пузырь. Сам он состоит из мыла и воды. Внутри – воздух в замкнутой ловушке. Поверхностное натяжение жидкости в пузыре сжимает воздух по всем направлениям. В мгновения, когда пузырь формируется, оно замыкает воздух в объеме, для которого площадь поверхности минимальна. Получается пузырь с максимальным возможным давлением, потому что мыльная пленка не растянется больше, чем это необходимо. А форма с наименьшей площадью поверхности для данного объема – это и есть идеальная сфера.
Можно было бы ежегодно экономить миллиарды долларов на упаковочных материалах, делая сферическими все упаковочные ящики и коробки в супермаркетах. Содержимое самого большого ящика сухого завтрака «Чириоз» легко уместилось бы в сферическую коробку радиусом в четыре с половиной дюйма. Просто никому не хочется бегать по коридору за раскатывающимися в разные стороны круглыми коробочками, которые будут то и дело сваливаться с полок.
На борту орбитальной космической станции, где царит невесомость, можно осторожно разбрызгивать капельки расплавленного – или жидкого – металла, и в воздухе будут плавать маленькие блестящие бусинки. Когда они остынут, они затвердеют, и поверхностное натяжение придаст им форму абсолютно идеальных сфер.
Для больших космических объектов, таких как планеты и звезды, поверхностное натяжение не столь важно. Эти объекты делают сферическими энергия и тяготение. Тяготение не только заставляет яблоки срываться с веток или искривляет пространство. Оно пытается сжать вещество во всех направлениях, стягивая его во все меньшем и меньшем объеме. Но тяготение не всегда побеждает – в твердых телах химические связи очень сильны. Гималаи, величайшая горная цепь нашей планеты, не проваливаются к центру Земли под действием тяготения, потому что этому противодействует жесткость каменного материала земной коры.
Конечно, на Земле есть высокие горные пики и глубокие ущелья, но, когда смотришь на нее из космоса, наша планета выглядит идеально гладкой сферой.
Прежде чем восхищаться величественными горными хребтами, стоит вспомнить, что по сравнению с другими планетами Земля имеет довольно плоскую поверхность. Молодежи, восходящей на Гималаи, горы представляются гигантскими. Городскому мальчику вроде меня кажется огромным любой высокий холм. И можно решить, что из-за всех этих горных вершин Земля из космоса, с большого расстояния, видится довольно неровной. Но Земля как космический объект удивительно гладкая. Если бы у вас был сверхгигантский волшебный палец и вы бы провели им по земной поверхности (по океанам и по всему остальному), она показалась бы вам гладенькой, как бильярдный шарик. Глобусы, на которых делают рельефную поверхность, чтобы отметить горные цепи, очень преувеличивают реальную высоту гор.
Итак, несмотря на горы и ущелья и на легкую сплюснутость у полюсов, Земля из космоса все же выглядит идеальной сферой.
Земные горы смотрятся довольно скромно, и если их сравнивать с некоторыми другими горными вершинами Солнечной системы. Величайшая гора Марса Олимп имеет высоту 65 000 футов и основание почти 300 миль в диаметре. По сравнению с ней знаменитый пик Мак-Кинли на Аляске выглядит кротовой горкой. Даже Эверест более чем вдвое ниже нее.
Скажете, нечестно? Почему это марсианам так повезло? Космический рецепт здесь простой: чем слабее гравитация на поверхности объекта, тем выше могут быть на нем горы. Высота Эвереста близка к предельной высоте земной горы – если бы он был чуть больше, каменные слои, на которых он лежит, могли бы проломиться под его тяжестью.
На этой картинке художник изобразил двойную систему, в которой вращающаяся нейтронная звезда высасывает вещество из своего умирающего соседа, тусклого красного гиганта.
На Марсе сила тяжести гораздо меньше, чем на Земле. 70-фунтовый четвероклассник весил бы на Марсе всего 26 фунтов. Из-за меньшей гравитации и горы могут становиться выше. Вот почему Олимп такой огромный.
Звезды, которые украшают ясное ночное небо, тоже круглые. Это огромные и массивные газовые шары, гравитация делает их почти идеальными сферами. Но если звезда оказывается слишком близко к другому объекту с сильной гравитацией, этот объект начинает отрывать от звезды часть ее вещества. Такие вещи обычно происходят с двойными звездами, звездными парами, в которых компоненты связаны друг с другом той же силой притяжения, и в особенности когда одна из звезд пары является гигантской умирающей звездой – так называемым красным гигантом. Вторая звезда пары начинает высасывать вещество из красного гиганта, так что его форма становится похожа на вытянутую конфету «Хершиз-кисс».
Теперь мы немного поговорим о странном.
Представьте, что сотню миллионов слонов удалось запихать в тюбик губной помады.
Чтобы добиться такой плотности, придется поработать. В атоме протоны и нейтроны тесно упакованы в центральной области, в ядре, а электроны обращаются вокруг ядра по орбитам. Между орбитами электронов и плотно упакованным центральным ядром атома – пустота. Чтобы втиснуть всех этих слонов в маленький цилиндрик из-под помады, придется сжать атомы так, чтобы пустота между электронами и ядром исчезла. В процессе этого почти все отрицательно заряженные электроны втиснутся в положительно заряженные протоны, и образуется шар из нейтронов (никак не заряженных).
Эта нейтронная звезда, пульсар по имени Вела, вращается быстрее, чем лопасти вертолетного винта.
Знакомьтесь: пульсар, еще один из моих любимых космических объектов. Он образовался не из слонов, а из облаков газа, и все же имеет такую же плотность, как в нашем примере с втиснутыми в тюбик толстокожими, и у него сумасшедшая поверхностная гравитация. На поверхности пульсара гора не может быть выше, чем толщина этой страницы. Но при такой силе тяжести, чтобы вскарабкаться на эту гору, вам может понадобиться больше энергии, чем альпинисту на Земле, поднимающемуся на утес высотой в три тысячи миль.