Астрономия. Популярные лекции — страница 11 из 45

Рис. 3.20 Если встречаются вместе три тела, то лишь два из них могут образовать устойчивую систему, передав энергию своей связи третьему.


Хотя все системы из трех тел рано или поздно распадаются, время их жизни очень сильно зависит от начальной конфигурации. Например, если два тела образуют тесную двойную систему, а третье обращается на большом расстоянии от них, то оно «воспринимает» двойную систему практически как точечную массу и движется весьма устойчиво почти по кеплеровской орбите. В свою очередь, на движение тел в тесной двойной системе наличие далекого третьего тела почти не влияет. Тройные и более сложные системы такого типа называют иерархическими, в отличие от хаотических систем, в которых расстояния между всеми компонентами одного порядка. При сравнимой массе тел переход к иерархическому строению происходит, когда характерное расстояние между компонентами соседних уровней различается в 5÷10 раз. Пример четырехкратной иерархической системы дает Эпсилон Лиры, в которой четыре звезды объединены в две тесные системы, обращающиеся вокруг общего центра масс.

Рис. 3.21. Тройные системы: хаотическая и иерархическая (условно устойчивая).


Рис. 3.22. Иерархические четырехкратные системы разной степени устойчивости.


Почему задача трех тел очень важна? Это задача жизненная: с Земли продолжают запускать космические аппараты на Луну (например, фотографировать обратную сторону Луны), и надо рассчитывать траекторию полета такого космического аппарата. Решают ее только численно, на компьютерах, шаг за шагом. Правда, очень часто можно сделать упрощающие предположения. Например, разумно предположить, что среди этих трех тел только два массивные, а третье по сравнению с ними невесомое, т. е. они его притягивают, а оно на них не влияет. Второе упрощение: пусть все они движутся в одной плоскости, то есть легкое тело летает в орбитальной плоскости первых двух. Третье упрощение: пусть массивные тела относительно своего центра массы движутся по круговым орбитам. И вот когда мы принимаем во внимание все эти упрощения, получается задача, которую уже можно решать аналитически; она называется ограниченной круговой задачей трех тел. Тогда можно перейти в систему координат, связанную с вращением двух массивных тел, чтобы они в этой системе оставались на месте, а вся остальная Вселенная крутилась вокруг них.

Рис. 3.23. В задачи космического аппарата «Луна-3» входило фотографирование Луны с орбиты и последующая передача фотоснимков на Землю.


Но если вращается система координат, то в ней появляются центробежная и кориолисова силы, их надо ввести в эту систему соответствующими слагаемыми в уравнениях. И оказывается, что в такой системе есть 5 точек, где третье — легкое — тело может оставаться неподвижным относительно двух массивных (это означает, что в обычной системе координат оно будет обращаться вокруг центра масс синхронно с ними). Три из этих точек — на соединяющей массивные тела линии — обнаружил еще Эйлер, а две другие — при вершинах равносторонних треугольников — Лагранж, но все их называют точками Лагранжа и обозначают буквой L (рис. 3.24).

Рис. 3.24. Пять точек Лагранжа в системе «Земля — Луна».


Если нанести на плоскость линии равного потенциала (гравитационного плюс центробежного), то на такой картине мы сразу увидим области контроля гравитации одного и другого тела, область их совместного «контроля», а также области всех пяти точек Лагранжа. Лучше смотреть на это в объемном эскизе: для этого надо построить эквипотенциальную поверхность, в которой будет две гравитационные ямы, вокруг которых центробежный потенциал дает скат по всем направлениям, потому что если вы отдалились от массивных тел, то центробежная сила выкинет вас из этой системы. Точки Лагранжа — это точки равновесия, но оно не всегда устойчиво. В линейных точках L1, L2 и L3 оно вообще неустойчиво: чуть отклонился — и уже не вернешься. А в окрестности треугольных точек L4 и L5 слабая устойчивость есть лишь при большом отношении масс двух главных объектов — не менее 25 : 1.

Рис. 3.25. Направления действующих сил в окрестности точек Лагранжа системы Солнце — Земля. Во второй точке Эйлера — Лагранжа космический аппарат постоянно виден с ночного полушария Земли.


Тем не менее в природе, да и в технике тоже, все пять точек Лагранжа довольно часто играют большую роль. Луна движется внутри области гравитационного контроля Земли, но не очень далеко от пограничной линии (рис. 3.26), так что устойчивость Луны не слишком велика, она не очень сильно привязана к Земле. С другой стороны, космические аппараты часто запускают в разные точки Лагранжа, потому что там очень удобно «подвесить» аппарат. Так, в точке L1 он будет всегда смотреть на Солнце, а антенна для связи с Землей при этом постоянно будет направлена на Землю, в точке L4 он одновременно будет видеть и Солнце, и Землю с Луной и в то же время находиться подальше от них, т. е. разные точки играют разную роль. Точка L3 — единственная, которая пока не используется, хотя она очень интересна: если туда поместить спутник, то он будет наблюдать ту полусферу Солнца, которую с Земли не видно. Но как с ним связываться? Радиосигнал сквозь Солнце не проходит, поэтому надо будет запускать еще и отдельный ретранслятор.

Рис. 3.26. Поверхности нулевой скорости (эквипотенциальные) в плоской круговой ограниченной (m3 ≪ m1 и m2) задаче трех тел.


Эквипотенциальная поверхность системы двух массивных тел, проходящая через точку L1, ограничивает две области пространства, контролируемые соответствующим центром притяжения. Их называют полостями Роша, по имени французского математика, который выполнил расчеты. Если легкое тело приближается к окрестности этой точки, то оно будет двигаться по довольно замысловатой траектории (рис. 3.27). Например, мы запустили спутник к Луне, он перескакивает в область контроля Луны, делает там несколько пируэтов, а затем снова оказывается спутником Земли. Но за границы эквипотенциальной поверхности он выйти не может, потому что энергии ему для этого не хватает, он заперт в совместном гравитационном поле двух тел.

Рис. 3.27. Траектория космического аппарата в неинерциальной системе отсчета, в которой два массивных небесных тела неподвижны.


В нашей планетной системе два самых массивных тела — Солнце и Юпитер. В точках Лангранжа этой пары реализовалась интересная ситуация: в них скопилось очень много астероидов. Попадая в эту область относительной устойчивости, астероиды остаются там надолго, на миллионы лет, а уходят оттуда очень медленно, поэтому их концентрация там весьма высока. Эти две группы астероидов постоянно сопровождают Юпитер на его орбите, доказывая, что Лагранж правильно сделал свои вычисления: одна группа (условно названная «Греки») движется на 60° впереди Юпитера, другая («Троянцы») — на 60° позади него, и в каждой по несколько тысяч астероидов (рис. 3.28).

Рис. 3.28. Впереди и позади Юпитера по его орбите летят астероиды, накопившиеся в окрестности точек Лагранжа L4 и L5.

Гравитационная праща

Есть еще одна важная вещь, связанная с задачей трех тел: гравитационный маневр, который часто используют для доразгона космических аппаратов. Например, чтобы забросить зонд к дальним планетам — Нептуну, Урану, Плутону и дальше, — используют гравитационное притяжение встречающейся по пути планеты. В принципе идея та же, что и в обычной механике: если вы катнете маленький мячик навстречу катящемуся тяжелому, при отскоке скорость маленького увеличится — это следствие закона сохранения импульса. То же самое случается, когда планета летит вперед, а зонд, приближаясь к ней, облетает ее и при этом приобретает дополнительный импульс. Чтобы осознать причину этого, можно рассуждать так: находясь на этой планете, мы увидим, что зонд приближается к нам на большой относительной скорости (равной сумме скоростей планеты и зонда), потом он разворачивает свой вектор скорости и удаляется с таким же модулем относительной скорости. Но в неподвижной системе координат получается, что скорость планеты добавилась к нему два раза: сначала на встречном курсе, потом на уходящем.

Рис. 3.29. Космические аппараты «Вояджер». Рисунок: NASA.


Значит, при разумном планировании траектории можно увеличить скорость зонда в пределе на удвоенную орбитальную скорость планеты, хотя удается такое редко. Так, в 1977 г. запустили два космических аппарата, «Вояджер-1» и «Вояджер-2», — очень красивый был эксперимент. Оба зонда облетели Юпитер и Сатурн, получив от этих планет такие толчки (и, кстати, подходящие направления скорости), что и тот и другой вылетели из Солнечной системы. Ракета их так разогнать не могла, именно влияние Юпитера и Сатурна позволило одному сразу покинуть Солнечную систему, а другому по пути еще посетить Уран и Нептун (рис. 3.30). Вот такой грандиозный тур они совершили — а все благодаря точному расчету траектории полета. Кстати, первый зонд запустили без надежды на точный расчет, он посетил только Юпитер и Сатурн, но к Урану и Нептуну не попал. А со вторым уже стало ясно, что можно рискнуть, просто его надо было круче завернуть. Чтобы сильнее повернуть вектор скорости, надо пролететь ближе к планете (чем больше рискуешь, приближаясь на опасное расстояние к планете, тем больше прибавка в скорости при удачном гравитационном маневре). И чтобы она сильнее притягивала, куда, вы думаете, его запустили? Его направили в щель между внутренним кольцом Сатурна и поверхностью планеты. Тогда еще не знали, что это место тоже заполнено веществом, думали, что там пустота. А теперь мы понимаем, что риск был огромный: он там запросто мог обо что-нибудь стукнуться. Но зонду повезло, он беспрепятственно проскочил в эту щель, под действием планеты разогнался, сильно повернул — и дальше полетел куда надо.