Астрономия. Популярные лекции — страница 12 из 45

Рис. 3.30. Траектории аппаратов «Вояджер-1» и «Вояджер-2» в Солнечной системе с отметками дат.

Траектория Луны

Обычно в учебниках говорится: Луна обращается вокруг Земли, а Земля — вокруг Солнца, поэтому траектория Луны вдоль орбиты Земли выглядит так — и рисуют циклоиду. Начинающий астроном именно так изобразил бы траекторию Луны, как она ходит вокруг Земли и наворачивает петельки (рис. 3.31, 3.32). Но на самом деле это неверно, и мы можем легко опровергнуть подобную картину, сделав простой расчет.

Рис. 3.31. На первый взгляд, так должна выглядеть траектория Луны, но это неправильно.


Для физиков не должно быть сомнений в том, что траектория любого тела всегда вогнута туда, куда его тянет равнодействующая (суммарный вектор) всех сил. Давайте проверим, что сильнее притягивает Луну — Земля или Солнце. Это очень просто: сравниваем две гравитационные силы, они равны отношению массы к квадрату расстояния (см. предыдущую лекцию). Луна примерно в 390 раз ближе к Земле, чем к Солнцу. А отношение масс Земли и Солнца — около 3 ·10–6, т. е. Земля в 333 тыс. раз легче Солнца. Подставляем в формулу — и получаем, что сила притяжения Луны к Солнцу вдвое больше, чем к Земле. Факт неожиданный: ведь если Солнце притягивает сильнее, чем Земля, то Луна должна быть спутником Солнца, а не Земли, разве не так? Отчего же тогда она «бегает» вокруг нас, если Солнце ее притягивает вдвое сильнее? С этим надо разобраться.

Рис. 3.32. Траектория Луны, как ее часто неверно изображают.


Рис. 3.33. Возмущающее влияние Солнца на орбитальное движение Луны. Луну сильнее притягивает Солнце, чем Земля.


Если мы построим график движения Земли и Луны в реальном масштабе, то увидим, что знак кривизны траектории Луны никогда не меняется: кривая всегда вогнута внутрь, поскольку равнодействующая сила всегда направлена внутрь орбиты, т. е. в сторону Солнца. Почему же Луна не отрывается от Земли и не становится спутником Солнца? Да потому, что и Земля, и Луна притягиваются Солнцем почти одинаково, но чтобы оно было способно оторвать Луну от Земли, нужно, чтобы разница между ускорениями Земли и Луны к Солнцу была больше, чем ускорение Луны к Земле. Вот если бы радиус лунной орбиты был, скажем, всего лишь вчетверо меньше, чем радиус орбиты Земли, то Луна действительно выписывала бы «школьные» пируэты. А когда мы начинаем увеличивать размеры земной орбиты, удалять Солнце, приближая отношение параметров к истинным, дело постепенно приходит к тому, что орбиты Луны и Земли становятся практически неразличимыми — обе они спутники Солнца. И лишь потому, что они находятся близко друг к другу, Земля не отпускает от себя Луну; обе эти планеты (Луна — тоже планета, точнее, планета-спутник) практически одинаково «падают» на Солнце, т. е. почти с одинаковым ускорением движутся относительно Солнца, а разница этих ускорений так мала, что Земля способна контролировать положение Луны рядом с собой:

В заключение рассказа хочу посоветовать вам книги для дополнительного чтения. Самые простые для понимания — это «Парадоксы космонавтики» вышеупомянутого А. А. Штернфельда и «Цели и пути покорения космоса» Р. Г. Перельмана (не Якова Исидоровича, который написал «Занимательную физику», и не Григория Яковлевича — знаменитого математика, а другого Перельмана, Романа Григорьевича, инженера). Следующая пара книг — уже с математическими формулами: это «Механика космического полета» В. И. Левантовского и «Основы космонавтики» М. Фертрегта. Далее идут серьезные справочники по небесной механике — «Введение в астронавтику» Г. Руппе и «Космонавтика» Е. В. Тарасова. И, наконец, вышедший в двух изданиях бестселлер «Очерки о движении космических тел», автор которого, Владимир Васильевич Белецкий, — совершенно удивительный человек и фантастический лектор. Он абсолютно глухой, но, впервые побывав на его лекции, я об этом даже не догадался, настолько хорошо он рассказывал. И книгу написал потрясающую — ни о какой более захватывающей про небесную механику мне не известно.

Рис. 3.34. Часть орбиты Земли и Луны в натуральном масштабе.



4. Планеты земной группы

Внутренняя область Солнечной системы населена разнообразными телами: крупными планетами, их спутниками, а также малыми телами — астероидами и кометами. С 2006 г. в группе планет введена новая подгруппа — планеты-карлики (dwarf planet), обладающие внутренними качествами планет (сфероидальная форма, геологическая активность), но в силу малой массы не способные доминировать в окрестности своей орбиты. Теперь 8 самых массивных планет — от Меркурия до Нептуна — решено называть просто планетами (planet), хотя в разговоре астрономы для однозначности часто называют их «большими планетами», чтобы отличать от планет-карликов. Термин «малая планета», который многие годы применялся к астероидам, теперь не рекомендовано использовать во избежание путаницы с карликовыми планетами.

В области больших планет мы видим четкое деление на две группы по 4 планеты в каждой: внешнюю часть этой области занимают планеты-гиганты, а внутреннюю — значительно менее массивные планеты земной группы. Группу гигантов также обычно делят пополам: газовые гиганты (Юпитер и Сатурн) и ледяные гиганты (Уран и Нептун). В группе планет земного типа тоже намечается деление пополам: Венера и Земля чрезвычайно похожи друг на друга по многим физическим параметрам, а Меркурий и Марс уступают им по массе на порядок и почти лишены атмосферы (даже у Марса она в сотни раз меньше земной, а у Меркурия практически отсутствует).

Следует отметить, что среди двух сотен спутников планет можно выделить не менее 16 тел, обладающих внутренними свойствами полноценных планет. Нередко они превосходят своими размерами и массами планеты-карлики, но при этом находятся под контролем гравитации значительно более массивных тел. Речь идет о Луне, Титане, галилеевых спутниках Юпитера и им подобных. Поэтому было бы естественно ввести в номенклатуру Солнечной системы новую группу для таких «подчиненных» объектов планетного типа, назвав их «планетами-спутниками». Но пока эта идея в стадии обсуждения.

Рис 4.1. Классификация тел Солнечной системы.


Вернемся к планетам земного типа. По сравнению с гигантами они привлекательны тем, что имеют твердую поверхность, на которую могут осуществлять посадку космические зонды. Начиная с 1970-х гг. автоматические станции и самоходные аппараты СССР и США неоднократно садились на поверхность Венеры и Марса и успешно там работали. Посадок на Меркурий пока не было, поскольку полеты в окрестности Солнца и посадка на массивное безатмосферное тело технически весьма сложны.

Изучая планеты земного типа, астрономы не забывают и саму Землю. Анализ снимков из космоса позволил многое понять в динамике земной атмосферы, в строении ее верхних слоев (куда не поднимаются самолеты и даже аэростаты), в процессах, происходящих в ее магнитосфере. Сравнивая между собой строение атмосфер землеподобных планет, можно многое понять в их истории и точнее прогнозировать их будущее. А поскольку все высшие растения и животные обитают на поверхности нашей (или не только нашей?) планеты, особенно важны для нас характеристики нижних слоев атмосферы. Эта лекция посвящена планетам земного типа, в основном их внешнему виду и условиям на поверхности.

Яркость планеты. Альбедо

Глядя на планету издалека, мы легко различаем тела с атмосферой и без нее. Присутствие атмосферы, а точнее наличие в ней облаков, делает внешность планеты изменчивой и существенно повышает яркость ее диска. Это ясно видно, если расположить планеты в ряд от совершенно безоблачных (безатмосферных) до полностью закрытых облаками: Меркурий, Марс, Земля, Венера. Каменистые безатмосферные тела похожи друг на друга до почти полной неразличимости: сравните, например, крупномасштабные снимки Луны и Меркурия. Даже опытный глаз с трудом различает между собой поверхности этих темных тел, густо покрытых метеоритными кратерами. Зато атмосфера придает любой планете неповторимый вид.

Наличием или отсутствием атмосферы у планеты управляют три фактора: температура, гравитационный потенциал у поверхности и глобальное магнитное поле. Такое поле есть только у Земли, и оно существенно защищает нашу атмосферу от потоков солнечной плазмы. Луна потеряла атмосферу (если вообще ее имела) из-за низкой критической скорости у поверхности, а Меркурий — из-за высокой температуры и мощного солнечного ветра. Марс при почти той же гравитации, что у Меркурия, смог сохранить остатки атмосферы, поскольку из-за удаленности от Солнца он холоден и не так интенсивно обдувается солнечным ветром.

По своим физическим параметрам Венера и Земля — почти близнецы. У них весьма схожи размер, масса, а значит, и средняя плотность. Их внутренняя структура — кора, мантия, железное ядро — также должна быть сходной, хотя уверенности в этом пока нет, поскольку сейсмические и прочие геологические данные о недрах Венеры отсутствуют. Разумеется, и в недра Земли мы глубоко не проникали: в большинстве мест — на 3–4 км, в отдельных точках — на 7–9 км и лишь в одной — на 12 км. Это менее 0,2 % радиуса Земли. Но сейсмические, гравиметрические и другие измерения позволяют судить о земных недрах весьма детально, а для других планет таких данных почти нет. Детальные карты гравитационного поля получены только для Луны; потоки тепла из недр измерены только на Луне; сейсмометры пока работали тоже лишь на Луне и (не очень чувствительный) на Марсе.

О внутренней жизни планет геологи до сих пор судят по особенностям их твердой поверхности. Например, отсутствие признаков литосферных плит у Венеры существенно отличает ее от Земли, в эволюции поверхности которой тектонические процессы (дрейф континентов, спрединг, субдукция и т. п.) играют определяющую роль. В то же время некоторые косвенные данные указывают на возможность тектоники плит на Марсе в прошлом, а также тектоники ледяных полей на Европе, спутнике Юпитера. Таким образом, внешнее сходство планет (Венера — Земля) не гарантирует сходства их внутреннего строения и процессов в их недрах. А планеты, не похожие друг на друга, могут демонстрировать сходные геологические явления.