Астрономия. Популярные лекции — страница 40 из 45

Вот как с возрастом меняется химический состав ядра звезды: поначалу гелия было мало, а водорода много. Водород постепенно «сгорает», из него получается гелий. В конце жизни звезды в ее центре уже почти нет водорода, остался один гелий. И плотность там начинает стремительно расти: к концу эволюции вещество на 3–4 порядка плотнее изначального. Ядро сжимается, а оболочка расширяется, т. е. звезда становится все более неоднородной по плотности — это происходит в любой стареющей звезде, а когда звезда уже погибает, в ее ядре начинаются взрывы, оно начинает пульсировать Но это уже другая история.

Таким образом, вся видимая жизнь Солнца укладывается в несколько этапов. Сначала оно родилось из облака разреженного газа и бóльшую часть жизни живет, почти не меняясь (сейчас мы находимся в середине жизненного пути Солнца). Потом светимость возрастает, и наконец происходят резкие изменения: оболочка начинает быстро распухать, ее гравитационная связь с ядром звезды становится незначительной, и под давлением излучения ядра оболочка сбрасывается и «растворяется» в окружающем пространстве — из звезды возникает так называемая планетарная туманность. Ядро остается, но термоядерных источников энергии у него уже нет, оно расходует свой запас тепла, постепенно охлаждаясь, сжимается и становится плотным объектом. В зависимости от массы из обычной звезды получается либо белый карлик, либо нейтронная звезда, либо черная дыра.

Пертурбации, происходящие со стареющей звездой типа Солнца, особенно сильно проявляются на диаграмме «светимость — температура поверхности». Если предыдущие 9 млрд лет Солнце едва-едва передвигалось в пределах главной последовательности (пока расходовался водород ядра), то, начав превращаться в красный гигант, оно будет стремительно увеличивать размер и светимость, пока водород продолжает «гореть» вокруг гелиевого ядра. Когда оно не выдерживает своего веса, вспыхивает гелий, температура возрастает, и звезда «зависает» на другой последовательности звезд, которые светят благодаря «горению» гелия. Но он быстро (примерно за 100 млн лет) выгорает, и звезда снова становится красным гигантом, уже более ярким. Наконец звезда сбрасывает оболочку и постепенно гаснет.

Рис. 12.7. Условная траектория Солнца на диаграмме Г — Р после покидания им главной последовательности, где свечение звезд обусловлено превращением водорода в гелий.


Это было лишь схематичное описание процесса, а при аккуратном расчете проявляются многие детали. В частности, выявляются критические точки жизни Солнца (рис. 12.7). Так, особенно сильно меняется светимость: Солнце будет светить (и греть Землю) в 4 тысячи раз сильнее, чем сейчас. Радиус в какой-то момент становится больше 200 сегодняшних радиусов Солнца. А сегодня его радиус в 200 раз меньше радиуса земной орбиты. Значит, однажды граница Солнца достигнет Земли. Людей на ней к тому времени давно уже не будет, но что при этом произойдет с самой планетой?

Рис. 12.8. Расчет эволюции плотности и элементного состава в центре водородно-гелиевой звезды с массой Солнца.


Земная орбита тоже не останется неизменной, ведь звезда при расширении будет терять массу, сбросит почти половину. А раз звезда «худеет», планеты по спирали удаляются от нее, потому что гравитация ослабевает. Может, это спасет Землю? Специалисты долго думали, как произвести точные расчеты, учтя всевозможные факторы, чтобы узнать, сгорит ли Земля или сможет уйти от Солнца. И такой расчет был сделан (Schröder K.-P., Smith R. C. Mon. Not. R. Astron. Soc., 2008, v. 386, p. 155–163). Что же он показал?

Радиус орбиты Земли будет постепенно расти, она действительно немного отдалится от Солнца. Но при приближении Солнца вступят в силу такие физические эффекты, как приливное трение, а впоследствии — и газодинамическое сопротивление в атмосфере Солнца. Таким образом, Земля притормозит, приблизится к Солнцу и нырнет внутрь. Марс, однако, сохранится, Юпитер тоже. Ну а Меркурий, Венера и, как выяснилось, Земля будут поглощены превращающимся в красный гигант Солнцем. Само оно этого, конечно, не заметит: масса Солнца будет в 200 тысяч раз больше массы Земли, так что оно проглотит ее и не подавится. Марс в этом смысле более перспективен, потому что, хотя он всего лишь в полтора раза дальше от Солнца, чем Земля, до него оно не доберется.

Рис. 12.9. Эволюционный путь Солнца на диаграмме Герцшпрунга — Рассела. Пунктир — протозвездная стадия (P — protostar). Точка А — начало главной последовательности (ZAMS — zero age main sequence); A — E — главная последовательность; E — F — покраснение; F — H — ветвь красных гигантов; I–L — горизонтальная ветвь. RGB: tip — вершина ветви красных гигантов; AGB: tip — вершина асимптотической ветви гигантов. Затем происходят тепловые пульсации, сброс планетарной туманности и переход к белому карлику.


А как другие звезды главной последовательности будут вести себя на диаграмме Герцшпрунга — Рассела, когда состарятся? Все они эволюционируют в направлении к красным гигантам. Если масса звезды чуть меньше массы Солнца, то от главной последовательности она уходит почти вертикально вверх (т. е. даже при тысячекратном увеличении мощности температура поверхности меняется незначительно). Но чем больше исходная масса звезды, тем меньше она «подпрыгивает» на диаграмме, т. е. температура меняется, а светимость — нет. В чем тут дело?


Рис. 12.10. Эволюция звезд разной массы после покидания главной последовательности. Тонкие диагональные прямые — линии постоянного радиуса, пунктир — начальная главная последовательность. Для звезды с массой 1 M расчет доведен до момента возгорания гелия в центре звезды, для звезд с массой 2, 3 и 5 M — до начала горения углерода, а для еще более массивных звезд — до окончания горения углерода в центральной области. Указано нынешнее положение Солнца и некоторых ярких звезд, а также положение звезды Sk1-69° 202 незадолго до ее взрыва, породившего вспышку сверхновой SN 1987A в Большом Магеллановом Облаке.


Физика этого явления очень проста. Массивные звезды являются настолько мощными источниками излучения, что главную роль в поддержании их равновесия, т. е. в противодействии гравитационным силам, играет давление не газа, а излучения. И они не могут стать еще более мощными источниками излучения, иначе их просто разорвет давление света. Такая звезда находится уже на пределе, или, как говорят, в условиях критической светимости, выше которой светимость быть не может. Возрастание мощности приводит к тому, что звезда начинает быстро расширяться, реакции в ней при этом замедляются, а тепловыделение и светимость остаются практически на том же уровне. Поэтому эволюция массивных звезд значительно сильнее отражается на температуре их поверхности, чем на светимости.

А от маломассивных звезд в правом нижнем углу на диаграмме никаких линий не нарисовано. Они светят настолько слабо, что еще многие миллиарды, а то и триллионы лет будут оставаться на главной последовательности, и ничего с ними происходить не будет. Потом они постепенно сожмутся и потухнут, но будет это отнюдь не скоро даже во вселенском масштабе времени.

Рис. 12.11. Будет ли новорожденная звезда светить долго или сразу же погаснет, существенно зависит от того, превысила ли ее масса критическую величину.


Обратите внимание, что от массы звезды на главной последовательности мощность ее излучения зависит очень сильно: звезда вдвое большей массы светит в 12–16 раз мощнее. Время жизни такой звезды, соответственно, меньше. Например, звезда в 100 раз массивнее Солнца живет лишь 2–3 миллиона лет. Несмотря на то, что запас топлива у нее в 100 раз больше, сжигает она его «моментально», потому что мощность излучения в миллион раз больше.

Длительность характерных этапов жизни звезд зависит также от массы. Массивная звезда быстро рождается: проходит около миллиона лет — и гравитация делает из нее нормальную звезду. Маломассивные звезды гравитация сжимает медленно, поэтому и живут они дольше. Этап главной последовательности, когда идет «горение» водорода, и заключительный этап красного гиганта, когда «горят» гелий и более тяжелые элементы, более массивные звезды также проходят быстрее. При этом 80–90 % своей жизни звезды проводят на главной последовательности, именно поэтому данная область диаграммы Г — Р «населена» столь большим количеством звезд. Красных гигантов примерно в 10 раз меньше, поскольку звезды проходят этот этап на порядок быстрее.


Интересный вариант получается, если масса исходного тела меньше 8 % массы нашего Солнца. Такие тела, у которых масса промежуточная между маленькими звездами и большими планетами, долго искали и лишь недавно, в 1995 г., открыли. Эти звездоподобные объекты называют коричневыми карликами или бурыми карликами (brown dwarf). Их особенность в том, что основная термоядерная реакция (между протонами) в них не пойдет, уж слишком холодна звезда; начнутся только ядерные реакции с литием и бериллием. Но этих элементов в природе мало, и «выгорают» они моментально. На какое-то время эти превращения поддержат температуру «звезды», а потом она начнет остывать, потому что никаких других источников тепла, кроме гравитационного, у нее не будет. Сейчас таких объектов мы знаем лишь несколько сотен. Они интересны, но их трудно исследовать. Диапазон их масс — от 13 до 78 масс Юпитера. Если начальная масса будет еще меньше, то получится не звезда, а планета, в которой термоядерные реакции вообще не начнутся.

Рис. 12.12. Эволюция светимости двух протозвезд, массы которых чуть больше и чуть меньше нижнего предела, необходимого для протекания водородного термоядерного синтеза. Одна станет нормальной звездой, долгоживущим красным карликом, а другая — коричневым карликом с очень коротким этапом свечения.

Красивая смерть

Когда у звезды заканчивается водород и начинается термоядерный синтез с участием накопившегося гелия, ее «термоядерный котел» многократно наращивает свою мощь, и она разбухает под давлением излучения, стабилизируясь при некотором (очень большом) размере. Но почему звезда раздувается не до бесконечности, что останавливает этот процесс? В качестве модели красного гиганта можно взять воздушный шарик: пока он не надут, он непрозрачен. А когда мы его надуваем, то же самое количество вещества распределяется по большей площади поверхности, и шарик становится прозрачным. Так и лучевое давление распирает звезду до тех пор, пока она не становится достаточно прозрачной, чтобы оно могло выйти наружу.