Рис. 2.2. Схема крутильных весов, на которых Генри Кавендиш измерял гравитационную силу.
Сначала в этой константе была уверенно измерена только одна значащая цифра, в XIX веке узнали вторую, в середине XX века появился третий знак, совсем недавно — четвертый. Пятый еще пока пытаются выяснить: даже при использовании самых лучших методов он у всех определяется по-разному, большей точности достичь не получается.
Рис. 2.3. Принципиальная схема крутильных весов.
Движение двух тел
Единственное тело в абсолютной пустоте будет лететь по прямой, потому что никакие внешние силы на него не действуют, — это случай тривиальный и неинтересный. А простейшей задачей небесной механики считается задача двух гравитационно взаимодействующих тел. Но ее можно еще упростить, если взять одно тело очень массивное, а другое очень маленькое. Малое тело движется под влиянием центростремительного ускорения, а большому безразлично, что там вокруг него бегает, фактически оно не «чувствует» чужого присутствия и поэтому неподвижно. Эта ситуация называется задачей одного тела в центральном гравитационном поле (рис. 2.4).
Рис. 2.4. Задача двух тел начинается с задачи о движении одного тела в центральном поле.
Рис. 2.5. Легкий спутник на круговой орбите очень большого радиуса.
Если начало системы координат совместить с массивным телом, то вследствие его неподвижности такая система координат будет инерциальной. И это может оказаться очень полезным. Например, для космического аппарата мы можем записать, что действующее на него центростремительное ускорение равно отношению силы гравитационного притяжения к его массе:
Если он обращается на достаточно дальней круговой орбите (рис. 2.5), то, выполнив простое преобразование этой формулы, можно однозначно связать орбитальный период с массой притягивающего тела. Собственно говоря, это единственный надежный метод для определения массы планеты:
Но задача становится сложнее, когда спутник находится близко к планете: при этом уже нельзя пренебрегать ее размером и формой (рис. 2.6). Казалось бы, это задача очень сложная, потому что для решения надо вычислить притяжение спутника к каждой точке планеты и сложить векторы сил. Та же проблема у геофизика, который интересуется внутренностью планеты и хочет узнать, какова гравитация на нужной глубине: ему надо бы вычислить притяжение ко всем точкам внешней части и ко всем точкам внутренней части. К счастью, еще Ньютон доказал две простые, но очень полезные теоремы, значительно облегчающие вычисления, — и за это ему спасибо.
Рис. 2.6. Легкий спутник на круговой орбите малого радиуса.
Первая теорема говорит о том, что если у вас есть однородная по плотности сферическая оболочка, то внутри нее гравитация отсутствует и ускорение везде равно нулю. Доказательство можно продемонстрировать на пальцах. Для этого помещаем в произвольное место полости пробный шарик и смотрим, какие силы на него действуют со стороны двух диаметрально противоположных бесконечно малых сегментов (рис. 2.7, где сегменты для наглядности показаны большими):
Рис. 2.7. Теорема Ньютона о гравитации внутри однородной сферы.
Площади и массы обоих сегментов прямо пропорциональны квадрату расстояния, а сила обратно пропорциональна квадрату расстояния, значит, оба оказывают на эту точку одинаковое по величине, но противоположно направленное влияние, то есть силы уравновешиваются. Таким образом, где бы ни находилось тело внутри оболочки, оно пребывает в состоянии невесомости. Более того: когда вы свободно падаете без опоры, вы тоже испытываете невесомость в течение короткого времени, пока не упали, а в полости вообще нет гравитационной силы, и «падать» там можно бесконечно долго.
Рис. 2.8. Теорема Ньютона о гравитации вне однородной сферы (в точке А).
Теперь из последовательности таких оболочек мы можем собрать всю планету целиком и понять, что для вычисления ускорения свободного падения в какой-то внутренней точке достаточно учитывать только более глубокие слои. А принимать во внимание наружные по отношению к рассматриваемой точке слои, которые лежат поверх нее, т. е. ближе к поверхности, нет необходимости, потому что они никакого влияния не оказывают. В частности, это приближение верно для Земли, у которой плотность к центру растет, при этом на каждой выбранной глубине она под любой точкой поверхности почти одинакова. Геофизики «молятся» на эту теорему Ньютона, потому что она позволяет им легко вычислять гравитационное поле внутри шаровидных (сферически симметричных) космических тел. Но для тел другой формы это уже не справедливо.
Вторая теорема Ньютона касается притяжения однородной сферической оболочкой тела, расположенного снаружи. Оказывается, в этом случае оболочка действует на внешнее тело так же, как и материальная точка с той же массой в центре сферы. Для доказательства нужно вычислить гравитационную потенциальную энергию точечного тела единичной массы в зависимости от расстояния от этой точки до кольца, вырезанного в сфере (рис. 2.8). При этом ничего более сложного, чем теорема косинусов, не требуется.
Пусть у сферы единичная поверхностная плотность. Тогда потенциальная энергия в поле шарового пояса определяется так:
Потенциальная энергия в поле всей сферы:
Ускорение в точке А:
Из серии сферических оболочек можно собрать массивную шаровидную планету или звезду, а значит, в ее поле тяготения движение всех малых объектов — как спутников, так и тел, пролетающих мимо, — можно рассчитывать в приближении, будто вся масса шара сосредоточена в центральной точке. Этот факт очень важен для астрономов, потому что все достаточно крупные космические тела почти сферичны, если они не очень быстро вращаются (иначе они становятся эллипсоидами и эти теоремы перестают работать).
Теперь давайте представим себе мир, в котором гравитация устроена не по Ньютону. С помощью простенькой компьютерной программы интегрирования уравнений движения попробуем «поиграть» с законом гравитации, меняя показатель степени m при расстоянии R в формуле Ньютона (рис. 2.9). В классическом случае m = 2. Запускаем пробное тело вокруг точечной массы и получаем ожидаемый результат: пробное тело бегает по одному и тому же эллипсу.
Если сделаем зависимость гравитации от расстояния более жесткой, увеличив показатель степени чуть-чуть, всего на 10 %, то получится вот что: вроде бы движение происходит тоже по эллипсу, но он не остается неизменно ориентированным, его ось понемногу поворачивается — происходит прецессия оси. Теперь возьмем зависимость F (R) немного мягче ньютоновой, уменьшив m на 25 %. При таком законе тоже вырисовывается похожий эллипс, только вращающийся в противоположном направлении. Интересно, что если задать совсем уж невообразимый вариант m = 1 (т. е. F ~ 1/R), то угловая скорость прецессии оси становится близкой к угловой скорости обращения спутника.
Рис. 2.9. Движение частицы в разных силовых полях.
Несмотря на то что движение кажется хаотичным, можно заметить, что во всех рассмотренных случаях есть границы движения, за которые тело никогда не вылетает. Механики называют такое движение финитным, то есть ограниченным в пространстве. Если бы у нас, например, в законе Кулона показатель степени при расстоянии вдруг «поплыл», то электрон по крайней мере не убежал бы от ядра и не упал бы на него: ну, двигался бы немного более «хитро», чем в нашем мире, но с этим жить можно. Главное — что атом остался бы стабилен, не распался бы.
Эти численные эксперименты — вовсе не блажь. Дело в том, что Ньютонов закон действителен только в слабых гравитационных полях; он является, так сказать, лишь первым приближением к реальности. А если вы возьмете уравнения общей теории относительности и на их основе попытаетесь получить ньютоновское приближение, то к основному компоненту G M/R² добавятся поправки — слагаемые, растущие с увеличением потенциала гравитационного поля. То есть в общей теории относительности гравитация более круто зависит от расстояния, чем в теории Ньютона. Поэтому есть особенность приближения к объектам очень большой массы, но малого размера.
Рис. 2.10. Движение тела вблизи черной дыры. Расстояния по осям указаны в гравитационных радиусах черной дыры (rg).
Вот как замысловато будут кружить объекты в окрестности черной дыры (рис. 2.10): на каждом обороте (от апоцентра до апоцентра) эллипс разворачивается на 180°. При этом происходит не медленный дрейф оси, как в ранее рассмотренных случаях, а прыжки сразу на полоборота. Так что наши «игры» с законом притяжения имеют смысл: они позволяют моделировать реальное гравитационное поле вблизи массивных, плотных объектов: нейтронных звезд и черных дыр.
А вот теперь я увеличил показатель на целую единицу (m = 3), сделав зависимость еще более жесткой по сравнению с ньютоновой: F ~ 1/R3. Что мы видим: движение становится инфинитным, то есть пространственно неограниченным (рис. 2.11). Конечно, в принципе можно найти для частицы, находящейся на некотором расстоянии от тяготеющего центра, такую скорость, при которой частица пойдет по круговой орбите. Но это движение будет неустойчивым: стоит на какую-то мизерную долю изменить эту скорость, и частица, двигаясь по спирали, либо упадет на центр притяжения, либо навсегда уйдет от него. А в реальности какие-то случайные флуктуации всегда есть. Следовательно, в таком потенциальном поле ни атомов, ни планетных систем существовать не может.
Рис. 2.11. Движение в поле F ~ R–3 принципиально отличается от кеплеровского.
Доказано (это довольно легко сделать), что в законах, описывающих силовые поля, показатель степени m связан с геометрической размерностью физического пространства: он во всех случаях на единицу меньше, чем размерность пространства. Отсюда следует, что из записи фактических законов Кулона и Ньютона мы можем сказать, что наше пространство трехмерное и что четвертого пространственного измерения у нас нет, иначе все давно потеряло бы устойчивость, потому что атомы развалились бы.