Атлас искусственного интеллекта: руководство для будущего — страница 2 из 57

[14]. Следовательно, формальные аспекты интеллекта должны быть абстрагированы, устранены или адаптированы для компьютеров, что делает их неспособными обрабатывать информацию так, как это делают люди.

С 1960-х годов в ИИ многое изменилось, включая переход от символьных систем к недавней волне шумихи вокруг методов машинного обучения. Во многом споры о способностях ИИ были забыты, а скептицизм сошел на нет. С середины 2000-х годов ИИ быстро развивался как научная область и как индустрия. В настоящее время небольшое число мощных технологических корпораций развертывают системы ИИ в планетарном масштабе, и их системы снова называют сравнимыми или даже превосходящими человеческий интеллект.

Однако история об Умном Гансе напоминает нам о том, насколько узко мы рассматриваем или признаем интеллект. Ганса учили имитировать задачи в очень ограниченном диапазоне: сложение, вычитание и отстукивание слов. Ганс демонстрировал выдающиеся способности в межвидовом общении, публичных выступлениях и значительном терпении, но все это не было признано интеллектом. По словам автора и инженера Эллен Ульман, убеждение, будто разум подобен компьютеру и наоборот, «на несколько десятилетий заразило мышление в области компьютерных и когнитивных наук», создав своего рода первородный грех[15]. Это идеология картезианского дуализма в искусственном интеллекте: где ИИ понимается узко, как развоплощенный интеллект, отстраненный от любого отношения к материальному миру.

Что такое искусственный интеллект?

Давайте зададим простой вопрос: «Что такое искусственный интеллект?» Если вы спросите кого-нибудь на улице, он может упомянуть Siri или Apple, облачный сервис Amazon, автомобили Tesla или поисковый алгоритм Google. Если же вы обратитесь к экспертам в области глубокого обучения, вам дадут технический ответ о том, как нейронные сети организовываются в десятки слоев, получают данные типа метки, которым присваиваются пороговые значения, и они могут классифицировать данные таким образом, который пока что не до конца объясним[16]. В 1978 году, обсуждая экспертные системы, профессор Дональд Мичи описал ИИ как совершенствование знаний, где «может быть достигнута надежность и компетентность кодификации, значительно превосходящая самый высокий уровень, которого когда-либо достигал, а возможно, и может достичь, человек-эксперт без посторонней помощи»[17]. В одном из самых популярных учебников по этому предмету Стюарт Рассел и Питер Норвиг утверждают, что ИИ – это попытка понять и создать разумные сущности. «Интеллект в основном связан с рациональными действиями, – утверждают они. – В идеале – интеллектуальный агент предпринимает наилучшие возможные действия в той или иной ситуации»[18].

Каждый способ определения искусственного интеллекта выполняет свою задачу, устанавливая рамки того, как его будут понимать, измерять, оценивать и регулировать. Если ИИ определяется потребительскими брендами для корпоративной инфраструктуры, то маркетинг и реклама предопределили горизонт. Если ИИ рассматривается как более надежная или рациональная система по сравнению с человеком-экспертом, то это предполагает, что ему следует доверять принятие решений в области здравоохранения, образования и уголовного правосудия. Когда в центре внимания оказываются конкретные алгоритмические методы, это говорит о том, что важен только постоянный технический прогресс, без учета вычислительных затрат и будущих последствий для планеты.

Напротив, в этой книге я утверждаю, что ИИ не является ни чем-то искусственным, ни интеллектуальным. Скорее, искусственный интеллект – это воплощение и материал, созданный из природных ресурсов, топлива, человеческого труда, инфраструктуры, логистики, истории и классификаций. Системы ИИ не обладают автономностью, рациональностью или способностью распознавать что-либо без длительного, требующего больших вычислительных затрат обучения с использованием больших массивов данных или предопределенных правил и вознаграждений. Искусственный интеллект, каким мы его знаем, полностью зависит от гораздо более широкого набора политических и социальных структур. И из-за капитала, необходимого для масштабного создания ИИ, и способов видения, которые он оптимизирует, системы ИИ в конечном итоге предназначены для обслуживания существующих доминирующих интересов. В этом смысле искусственный интеллект – это реестр власти.

В этой книге мы рассмотрим, как в самом широком смысле создается искусственный интеллект, а также формирующие его экономические, политические, культурные и исторические силы. Как только мы свяжем ИИ со структурами и социальными системами, мы сможем избавиться от представления, будто искусственный интеллект – это исключительно техническая область. На фундаментальном уровне ИИ – это технические и социальные практики, институты и инфраструктуры, политика и культура. Вычислительный разум и воплощенная работа глубоко взаимосвязаны: системы ИИ как отражают, так и производят социальные отношения и понимание мира.

Стоит отметить, что термин «искусственный интеллект» иногда вызывает дискомфорт в сообществе компьютерных наук. Это словосочетание то входит, то выходит из моды на протяжении десятилетий, и используется больше в маркетинге, чем исследователями. В технической литературе чаще используется термин «машинное обучение». Тем не менее, номенклатура ИИ нередко используется в период подачи заявок на финансирование, когда венчурные капиталисты приходят с чековыми книжками, или когда исследователи стремятся привлечь внимание прессы к новому научному результату. Термин ИИ то используется, то снова отвергается, поэтому его значение постоянно меняется. Что касается меня, то я использую ИИ, говоря о массивной индустриальной формации, включающей политику, труд, культуру и капитал. Когда я говорю о машинном обучении, я имею в виду ряд технических подходов (которые, по сути, также являются социальными и инфраструктурными, хотя об этом редко упоминают).

Между тем, существуют значительные причины, по которым данная область была сосредоточена на технических аспектах – алгоритмических прорывах, постепенном совершенствовании продуктов и повышении удобства. Структуры власти на пересечении технологий, капитала и управления хорошо поддаются узкому, абстрактному анализу. Чтобы понять, каким образом ИИ приобретает фундаментально политический характер, нам нужно выйти за рамки нейронных сетей и статистического распознавания образов, и спросить: что оптимизируется, для кого, и кто принимает решения? Затем мы можем проследить последствия этого выбора.

Взгляд на искусственный интеллект как на атлас

Чем же атлас может помочь нам понять принципы создания искусственного интеллекта? Атлас – это необычный тип книги. Он представляет собой собрание разрозненных частей с картами, разрешение которых варьируется от спутникового обзора планеты до подробного изображения архипелага. Открывая атлас, вы, возможно, ищете конкретную информацию о каком-то месте, а может быть, вы блуждаете, следуя любопытству, и находите неожиданные пути и новые перспективы. Как отмечает историк науки Лоррейн Дастон, все научные атласы стремятся приучить глаз, сфокусировать внимание наблюдателя на конкретных деталях и значимых характеристиках[19]. Атлас представляет определенную точку зрения на мир с отпечатком науки – масштабами, соотношениями, широтами и долготами – и чувством формы и последовательности.

Однако атлас – это в равной степени акт творчества, некое субъективное, политическое и эстетическое вмешательство, сродни научной коллекции. Французский философ Жорж Диди-Юберман считает атлас чем-то, что живет в эстетической парадигме визуального и эпистемической парадигме знания. Задействуя и то, и другое, он подрывает идею о том, что наука и искусство когда-либо полностью разделялись[20]. Вместо этого атлас предлагает нам возможность пересмотреть мир, по-разному связать фрагменты и «снова собрать его воедино, не думая о том, что мы подводим итоги или исчерпываем его»[21].

Мой любимый пример о полезности картографического подхода принадлежит физику и критику технологий Урсуле Франклин: «Карты представляют собой целенаправленную деятельность: они призваны быть полезными, помогать путешественнику и преодолевать разрыв между известным и еще неизвестным; они являются свидетельством коллективного знания и проницательности»[22].

Карты предлагают нам компендиум открытых путей, общих способов познания, которые можно смешивать и комбинировать для создания новых взаимосвязей. Но существуют также карты господства, те национальные карты, на которых территория вырезана вдоль линий разлома власти: от прямого вмешательства при проведении границ через спорные пространства до выявления колониальных путей империй. Ссылаясь на атлас, я хочу сказать, что нам нужны новые способы понимания империй искусственного интеллекта. Нам нужна теория ИИ, учитывающая государства и корпорации, которые управляют им и доминируют над ним; добычу полезных ископаемых, оставляющую отпечаток на планете; массовый сбор данных; а также глубоко неравные и все более эксплуататорские методы труда, которые его поддерживают. Таковы меняющиеся тектоники власти в ИИ. Топографический подход предлагает различные перспективы и масштабы, выходящие за рамки абстрактных обещаний искусственного интеллекта или новейших моделей машинного обучения. Цель состоит в том, чтобы понять ИИ в более широком контексте, пройдя через множество различных ландшафтов вычислений и увидев, как они связаны между собой