[23].
Атласы актуальны и в другом смысле. Область ИИ явно пытается запечатлеть планету в удобочитаемой для вычислений форме. И это не метафора, а прямое стремление индустрии. Индустрия ИИ создает и нормализует собственные карты, как централизованный взгляд на человеческое движение, общение и труд. Некоторые ученые в области ИИ заявили о желании захватить мир и вытеснить другие формы познания. Профессор ИИ Фей-Фей Ли описывает свой проект ImageNet как процесс, направленный на «нанесение на карту всего мира объектов»[24]. В своем учебнике Рассел и Норвиг описывают искусственный интеллект следующим образом: «Механизм, относящийся к любой интеллектуальной задаче; это поистине универсальная область»[25]. Один из основателей искусственного интеллекта и ранний экспериментатор в области распознавания лиц Вуди Бледсоу выразился наиболее прямолинейно: «В долгосрочной перспективе ИИ – это единственная наука»[26]. Идея состоит в том, чтобы не создать атлас мира, а стать атласом. Этот колонизаторский импульс централизует власть в сфере ИИ: он определяет, как измеряется и определяется мир, одновременно отрицая, что это по своей сути политическая деятельность.
Не претендуя на универсальность, книга, которую вы держите в руках, представляет собой частичный отчет. Увлекая вас в мои исследования, я надеюсь показать вам, как формировались мои взгляды. Мы столкнемся с хорошо посещаемыми и менее известными ландшафтами вычислений: шахтами, длинными коридорами энергопоглощающих центров обработки данных, архивами, базами данных изображений и освещенными ангарами. Эти места включены не только для иллюстрации материальной конструкции ИИ и его идеологии, но и для того, чтобы «осветить неизбежно субъективные и политические аспекты картирования и предоставить альтернативу гегемонистским и авторитетным подходам», как пишет исследователь медиа Шеннон Мэттерн[27].
Модели понимания систем уже давно опираются на идеалы прозрачности. Как я писала вместе с исследователем СМИ Майком Ананни, способность видеть систему иногда приравнивается к способности знать, как она работает и как ею управлять[28]. Но эта тенденция имеет серьезные ограничения. В случае с ИИ у нас нет «черного ящика», нет секрета, который можно разоблачить, а есть множество переплетенных систем власти. Полная прозрачность является невозможной целью. Скорее, мы лучше понимаем роль ИИ в мире, изучая его материальную архитектуру, контекстную среду и преобладающую политику, а также прослеживая, как они связаны между собой.
Мои размышления опираются на такие дисциплины, как исследования науки и технологий, право и политическая философия, а также на опыт работы в академических кругах и в промышленной исследовательской лаборатории ИИ на протяжении почти десяти лет. За эти годы многие коллеги и сообщества изменили мой взгляд на мир: составление карты – это всегда коллективное занятие, и данная книга не является исключением[29]. Я благодарна ученым, создавшим новые способы понимания социотехнических систем, включая Джеффри Боукера, Бенджамина Браттона, Венди Чун, Лоррейн Дастон, Питера Галисона, Яна Хакинга, Стюарта Холла, Дональда Маккензи, Ахилла Мбембе, Алондру Нельсон, Сьюзен Ли Стар, Люси Сачман, и многим другим. На создание этой книги повлияли многочисленные беседы и чтение последних работ авторов, изучающих политику технологий, включая Марка Андреевича, Руха Бенджамина, Мередит Бруссард, Симону Браун, Джули Коэн, Сашу Костанза-Чок, Вирджинию Юбэнкс, Тарлетона Гиллеспи, Мар Хикс, Тунг-Хуи Ху, Юк Хуи, Сафию Умоджа Ноубл и Астру Тейлор.
Как и любая книга, моя работа возникла на основе жизненного опыта, что накладывает свои ограничения. Поскольку последние десять лет я жила и работала в США, мое внимание сосредоточено на западной индустрии ИИ. И все же я не ставлю перед собой цель создать полный глобальный атлас: сама эта идея наводит на мысль о захвате и колониальном контроле. Взгляд любого автора основывается на местных наблюдениях и интерпретациях, что географ окружающей среды Саманта Савилл называет «скромной географией», которая признает специфические перспективы, но не претендует на объективность или мастерство[30].
Mappa mundi Генриха Бюнтинга, известная как «Карта Бюнтинга в форме клеверного листа», символизирующая христианскую Троицу с городом Иерусалимом в центре мира. Из книги «Itinerarium Sacrae Scripturae» (Магдебург, 1581)
Подобно множеству способов создания атласа, существует немало вариантов будущего использования ИИ в мире. Расширение сферы применения систем ИИ может показаться неизбежным, хотя на самом деле это довольно спорный вопрос. Основополагающие концепции в области ИИ не возникают автономно, а формируются на основе определенного набора убеждений и перспектив. Главные разработчики современного атласа ИИ – это небольшая и однородная группа людей, базирующаяся в нескольких городах и работающая в отрасли, которая в настоящее время является самой богатой в мире. Подобно средневековым европейским mappae mundi (с лат. карта мира), которые иллюстрировали религиозные и классические концепции в той же степени, что и координаты, атласы, созданные индустрией ИИ, являются политическими интервенциями, а не нейтральным отражением мира. Настоящая книга написана в противовес логике колониального картографирования и охватывает различные истории, места и базы знаний, чтобы лучше понять роль ИИ в мире.
Как на данный момент, в двадцать первом веке, концептуализируется и конструируется ИИ? Что стоит на кону в повороте к искусственному интеллекту, и какие виды политики содержатся в системах отображения и интерпретации мира? Каковы социальные и материальные последствия включения ИИ в системы принятия решений таких социальных институтов, как образование и здравоохранение, финансы, государственная деятельность, взаимодействие на рабочем месте и прием на работу, системы коммуникаций и правосудия? Эта книга – не рассказ о коде и алгоритмах или о последних достижениях в области компьютерного зрения и обработки естественного языка; этим занимаются многие другие книги. Это также не этнографический рассказ об отдельном сообществе и влиянии ИИ на их опыт работы, жилья или медицины – хотя нам, конечно, нужно больше таких работ.
Напротив, это расширенный взгляд на искусственный интеллект как на добывающую промышленность. Создание современных систем ИИ зависит от использования энергетических и минеральных ресурсов планеты, дешевой рабочей силы и данных в больших масштабах. Чтобы увидеть это в действии, мы отправимся в серию путешествий по местам, которые раскрывают зачатки ИИ.
В первой главе мы начинаем с литиевых шахт в Неваде, одного из многих мест добычи полезных ископаемых, необходимых для питания современных вычислений. Именно в шахтах мы в самом буквальном смысле наблюдаем за добывающей политикой ИИ. Спрос технологического сектора на редкоземельные минералы, нефть и уголь огромен, но истинные затраты на их добычу никогда не покрываются самой отраслью. Что касается программного обеспечения, то создание моделей для обработки естественного языка и компьютерного зрения требует огромного количества энергии, а конкуренция за создание более быстрых и эффективных моделей привела к появлению вычислительно жадных методов, которые увеличивают углеродный след ИИ. От последних оставшихся деревьев в Малайзии, вырубленных с целью производства латекса для первых трансатлантических подводных кабелей, до гигантского искусственного озера токсичных отходов во Внутренней Монголии, мы прослеживаем экологические и человеческие места рождения планетарных вычислительных сетей и видим, как они продолжают терраформировать планету.
Во второй главе показано, как человеческий труд способствует созданию искусственного интеллекта. Мы рассмотрим цифровых сдельщиков, которым платят за выполнение микрозадач, чтобы системы данных выглядели более интеллектуальными, чем они есть на самом деле[31]. Наше путешествие приведет нас на склады Amazon, где работникам приходится успевать за алгоритмическим ритмом огромной логистической империи. Мы посетим чикагских рабочих-мясников на комбинате, где туши животных подвергаются вивисекции и готовятся к употреблению. И мы услышим рабочих, протестующих против систем искусственного интеллекта, внедряемых для усиления наблюдения и контроля.
Труд – это также и время. Координация действий людей с повторяющимися движениями роботов и линейного оборудования всегда предполагала управление телом в пространстве и времени[32]. От изобретения секундомера до TrueTime от Google процесс координации времени лежит в основе управления рабочим местом. Технологии ИИ как требуют, так и создают условия для все более детальных и точных механизмов управления временем. Координация требует все более подробной информации о том, что делают люди, как и когда.
Третья глава посвящена роли данных. Все общедоступные цифровые материалы – включая личные или потенциально опасные данные – собираются для тренировочных наборов, которые используются для создания моделей ИИ. Существуют гигантские базы данных, полные селфи людей, жестов рук, людей за рулем автомобилей, плача младенцев, разговоров в новостных группах 1990-х годов, и все это собрано для улучшения алгоритмов, выполняющих такие функции, как распознавание лиц, предсказание языка и обнаружение объектов. Когда эти коллекции больше не рассматриваются как личный материал людей, а просто как инфраструктура, конкретное значение или контекст изображения или видео считается неважным. Помимо серьезных вопросов неприкосновенности частной жизни и продолжающегося капитализма наблюдения, нынешняя практика работы с данными в ИИ вызывает глубокие этические, методологические и эпистемологические проблемы