[80]. Латекс перерабатывался и затем продавался через торговые рынки Сингапура на британский рынок, где он превращался в оболочки подводных кабелей, огибающих весь земной шар. Как пишет исследователь СМИ Николь Старосельски: «Военные стратеги рассматривали кабели как наиболее эффективный и безопасный способ связи с колониями – и, как следствие, контроля над ними»[81]. Маршруты подводных кабелей и сегодня обозначают ранние колониальные сети между центрами и перифериями империи[82].
Из зрелой гуттаперчи выходило около одиннадцати унций латекса. Но в 1857 году первый трансатлантический кабель длиной в 4500 километров и весом в две тысячи тонн потребовал около 250 тонн сырья. Для производства одной тонны материала требовалось около девятисот тысяч стволов. Джунгли Малайзии и Сингапура были вырублены; к началу 1880-х годов Palaquium gutta исчезла. В последней попытке спасти цепочку поставок британцы в 1883 году ввели запрет на сбор латекса, но дерево как вид уже практически вымерло[83].
Викторианская экологическая катастрофа на заре глобального информационного общества показывает, как переплетаются отношения между технологией и сырьем, окружающей средой и трудовыми практиками[84]. Так же как викторианцы спровоцировали экологическую катастрофу, так и современные горнодобывающие предприятия и глобальные цепочки поставок еще больше нарушают хрупкий экологический баланс нашей эпохи.
В предыстории планетарных вычислений присутствует мрачная ирония. В настоящее время крупномасштабные системы искусственного интеллекта стимулируют формы экстракции окружающей среды и данных, но, начиная с викторианской эпохи, алгоритмические вычисления возникли из желания управлять и контролировать войны, население и изменение климата.
Palaquium gutta
Историк Теодора Драйер описывает, как основатель математической статистики, английский ученый Карл Пирсон, стремился разрешить неопределенности планирования и управления путем разработки новых архитектур данных, включая стандартные отклонения и методы корреляции и регрессии. Его методы, в свою очередь, были глубоко связаны с наукой о расах, поскольку Пирсон – вместе со своим наставником, статистиком и основателем евгеники сэром Фрэнсисом Гальтоном – верил, что статистика может стать «первым шагом в исследовании возможного влияния селективного процесса на любой характер расы»[85].
Как пишет Драйер, «к концу 1930-х годов эти архитектуры данных – методы регрессии, стандартного отклонения и корреляции – стали доминирующими инструментами, используемыми для интерпретации социальной и государственной информации на мировой арене. Отслеживая узлы и маршруты мировой торговли, межвоенное „математико-статистическое движение“ стало огромным предприятием»[86]. Это предприятие продолжало расширяться после Второй мировой войны, поскольку новые вычислительные системы использовались в таких областях, как прогнозирование погоды в периоды засухи для повышения производительности крупномасштабного промышленного сельского хозяйства[87]. С этой точки зрения, алгоритмические вычисления, статистика и искусственный интеллект были разработаны в двадцатом веке для решения социальных и экологических проблем, но позже использовались для интенсификации промышленной добычи, эксплуатации и дальнейшего истощения экологических ресурсов.
Минералы – это основа искусственного интеллекта, но его жизненной силой по-прежнему является электрическая энергия. Передовые вычисления редко рассматриваются с точки зрения углеродного следа, ископаемого топлива и загрязнения окружающей среды; метафоры вроде «облака» подразумевают нечто плавающее и хрупкое в рамках естественной, зеленой индустрии[88]. Серверы спрятаны в неприметных центрах обработки данных, и их загрязняющие свойства гораздо менее заметны, чем дымящиеся трубы угольных электростанций. Технологический сектор активно рекламирует свою экологическую политику, инициативы по устойчивому развитию и планы по решению проблем, связанных с климатом, используя ИИ в качестве инструмента решения проблем. Все это является частью создаваемого общественностью имиджа устойчивой технологической индустрии без выбросов углекислого газа. В действительности же для работы вычислительных инфраструктур Amazon Web Services или Microsoft Azure требуется гигантское количество энергии, а углеродный след систем ИИ, работающих на этих платформах, постоянно растет[89].
Как пишет Тунг Хуи Ху в книге «Предыстория облака»: «Облако – это ресурсоемкая, добывающая технология, которая преобразует воду и электричество в вычислительную мощность, нанося значительный ущерб окружающей среде, которую затем вытесняет из поля зрения»[90]. Решение проблемы энергоемкой инфраструктуры стало одной из главных задач. Конечно, отрасль приложила значительные усилия, чтобы сделать центры обработки данных более энергоэффективными и увеличить использование возобновляемых источников энергии. Но уже сейчас углеродный след мировой вычислительной инфраструктуры сравнялся с углеродным следом авиационной промышленности в период ее расцвета, и он растет даже быстрее[91]. Оценки разнятся: такие исследователи, как Лотфи Белхир и Ахмед Эльмелиги, считают, что к 2040 году на долю технологического сектора придется 14 процентов глобальных выбросов парниковых газов, а группа исследователей из Швеции прогнозирует, что потребление электроэнергии одними только центрами обработки данных к 2030 году возрастет примерно в 15 раз[92].
Внимательно изучив вычислительные мощности, необходимые для создания моделей ИИ, мы видим, что стремление к экспоненциальному увеличению скорости и точности обходится планете дорогой ценой. Требования к обработке данных при обучении моделей ИИ и, следовательно, их энергопотребление все еще являются новой областью исследований. Одна из первых работ в этой области была опубликована исследователем ИИ Эммой Струбелл и ее командой из Массачусетского университета в Амхерсте в 2019 году. Сфокусировавшись на попытке понять углеродный след моделей обработки естественного языка (NLP), они начали набрасывать потенциальные оценки путем запуска моделей ИИ в течение сотен тысяч вычислительных часов[93]. Первые цифры оказались поразительными. Команда Струбелл обнаружила, что запуск всего одной модели NLP приводит к выбросу более 660000 фунтов углекислого газа, что эквивалентно пяти автомобилям, работающим на газе, за весь срок их службы (включая производство), или 125 перелетам в обе стороны из Нью-Йорка в Пекин[94].
Хуже того, исследователи отметили, что такое моделирование является, как минимум, базовой оптимистичной оценкой. Она не отражает реальных коммерческих масштабов, в которых работают такие компании, как Apple и Amazon, собирающие данные в Интернете и использующие свои собственные модели NLP для того, чтобы системы ИИ, такие как Siri и Alexa, звучали более человечно. Однако точный объем энергопотребления, производимого моделями ИИ в технологическом секторе, неизвестен; эта информация хранится как строго охраняемая корпоративная тайна. И здесь экономика данных основана на сохранении экологического невежества.
В области ИИ стандартной практикой является максимизация вычислительных циклов для повышения производительности, в соответствии с убеждением, что больше – значит лучше. Как говорит Рич Саттон из DeepMind: «Методы, использующие вычисления, в конечном итоге являются наиболее эффективными, причем с большим отрывом»[95]. Вычислительная техника перебора при обучении ИИ или систематический сбор большего количества данных и использование большего количества вычислительных циклов до достижения лучшего результата, привела к резкому увеличению потребления энергии. По оценкам OpenAI, с 2012 года объем вычислений, используемых для обучения одной модели ИИ, ежегодно увеличивался в десять раз. Это связано с тем, что разработчики «постоянно находят способы использовать больше чипов параллельно и готовы платить за это экономические издержки»[96]. Мышление с точки зрения экономических издержек сужает взгляд на более широкую локальную и экологическую цену сжигания вычислительных циклов как способа создания дополнительной эффективности. Тенденция к «вычислительному максимализму» имеет глубокие экологические последствия.
Центры обработки данных являются одними из крупнейших в мире потребителей электроэнергии[97]. Для питания этой многоуровневой машины требуется электроэнергия из сети в виде угля, газа, ядерной или возобновляемой энергии. Некоторые корпорации реагируют на растущую тревогу по поводу энергопотребления крупномасштабных вычислений: Apple и Google заявляют о своей углеродной нейтральности (это означает, что они компенсируют выбросы углерода путем покупки кредитов), а Microsoft обещает стать углеродно-нейтральной к 2030 году. Однако работники этих компаний настаивают на сокращении выбросов по всем направлениям, а не на поблажках из чувства вины перед окружающей средой[98]