Атлас искусственного интеллекта: руководство для будущего — страница 9 из 57

. Более того, Microsoft, Google и Amazon лицензируют свои платформы искусственного интеллекта, инженерные кадры и инфраструктуру компаниям, добывающим ископаемое топливо, чтобы помочь им найти и добыть топливо из недр земли, что еще больше стимулирует отрасль, наиболее ответственную за антропогенное изменение климата.

За пределами Соединенных Штатов поднимаются еще большие облака углекислого газа. Китайская индустрия центров обработки данных получает 73 процента электроэнергии из угля, выбросив в 2018 году около 99 миллионов тонн CO2[99]. Ожидается, что к 2023 году потребление электроэнергии инфраструктурой китайских центров обработки данных увеличится на две трети[100]. Гринпис поднял тревогу по поводу колоссальных энергетических потребностей крупнейших технологических компаний Китая, утверждая, что «ведущие технологические компании, включая Alibaba, Tencent и GDS, должны резко увеличить объемы закупок чистой энергии и раскрыть данные об энергопотреблении»[101]. Долгосрочное воздействие угольной энергетики проявляется повсюду, превышая любые национальные границы. Планетарный характер добычи ресурсов и ее последствий выходит далеко за рамки интересов национального государства.

Вода рассказывает еще одну историю об истинной стоимости вычислений. История использования воды в США полна сражений и секретных сделок, и, как и в случае с вычислениями, сделки, заключенные в отношении воды, держатся в секрете. Один из крупнейших в США центров обработки данных принадлежит Агентству национальной безопасности (АНБ) в Блаффдейле, штат Юта. Открытый с конца 2013 года, Центр обработки данных разведывательного сообщества в рамках комплексной национальной инициативы по кибербезопасности невозможно посетить. Но, проехав через окрестные пригороды, я нашла проселок на холме, поросшем шалфеем, и оттуда смогла поближе рассмотреть разросшийся объект площадью 1,2 миллиона квадратных футов. Этот объект имеет своего рода символическую силу следующей эры правительственного сбора данных, поскольку он был показан в таких фильмах, как «Citizenfour: правда Сноудена», и изображен в тысячах новостных сюжетов об АНБ. Однако вживую он выглядит неприметно и прозаично – гигантский контейнер для хранения данных, совмещенный с блоком правительственных офисов.

Борьба за воду началась еще до официального открытия центра обработки данных, учитывая его расположение в засушливом штате Юта[102]. Местные журналисты хотели подтвердить достоверность данных о потреблении 1,7 млн. галлонов воды в день, но АНБ изначально отказалось предоставить данные, отредактировало все детали в открытых источниках и заявило, что использование воды является вопросом национальной безопасности. Тогда активисты создали буклеты, призывающие прекратить их материальную поддержку, и разработали стратегию, согласно которой юридический контроль за использованием воды мог бы помочь закрыть объект[103]. Но город Блаффдейл уже заключил многолетнюю сделку с АНБ, по которой город продавал воду по тарифам значительно ниже среднего в обмен на обещание экономического роста[104]. Геополитика воды теперь глубоко объединена с механизмами и политикой центров обработки данных, вычислений и власти – во всех смыслах. С засушливого склона холма, с которого открывается вид на хранилище данных АНБ, все споры и недомолвки о воде становятся понятными: вода, которая используется для охлаждения серверов, отбирается у сообществ и мест обитания, от нее зависящих.

Как грязная работа горнодобывающего сектора была удалена от компаний и жителей городов, так и большинство центров обработки данных находятся вдали от крупных населенных пунктов, будь то в пустыне или в полупромышленных пригородах. Это способствует тому, что мы считаем облако невидимым и абстрагированным, в то время как на самом деле оно материально, влияет на окружающую среду и климат таким образом, что это далеко не всегда осознается и учитывается. Облако зависит от земли, и для того, чтобы оно росло, необходимо расширять ресурсы и слои логистики и транспорта, которые находятся в постоянном движении.

Логистический слой

До сих пор мы рассматривали материальные составляющие ИИ, от редкоземельных элементов до энергии. Основывая наш анализ на конкретных материальных составляющих ИИ – вещах, местах и людях, – мы можем увидеть, как эти составляющие действуют в рамках более широких систем власти. Возьмем, к примеру, глобальные логистические машины, которые перемещают по планете минералы, топливо, оборудование, работников и потребительские устройства ИИ[105]. Головокружительное зрелище логистики и производства, демонстрируемое такими компаниями, как Amazon, было бы невозможно без разработки и широкого признания стандартизированного металлического объекта: грузового контейнера. Подобно подводным кабелям, грузовые контейнеры связывают отрасли глобальной коммуникации, транспорта и капитала, являясь материальным воплощением того, что математики называют «оптимальной транспортировкой» – в данном случае, как оптимизация пространства и ресурсов на торговых путях мира.

Стандартизированные грузовые контейнеры (сами построенные из основных земных элементов – углерода и железа, выкованных в виде стали) обеспечили взрыв современной судоходной промышленности, что, в свою очередь, позволило представить и смоделировать планету как единую массивную фабрику. Грузовой контейнер – это единая мера стоимости, подобно конструктору «Лего», которая может преодолевать тысячи миль, прежде чем встретится со своим конечным пунктом назначения в качестве модульной части более крупной системы доставки. В 2017 году грузоподъемность контейнеровозов в морской торговле достигла почти 250 миллионов дедвейт-тонн грузов, среди которых доминируют такие гигантские судоходные компании, как датская Maersk, швейцарская Mediterranean Shipping Company и французская CMA CGM Group, каждая из которых владеет сотнями контейнеровозов[106]. Для этих коммерческих предприятий грузовые перевозки – относительно дешевый способ перемещения по сосудистой системе глобальной фабрики, однако они скрывают гораздо большие внешние издержки. Точно так же, как они склонны пренебрегать физическими реалиями и затратами инфраструктуры искусственного интеллекта, популярная культура и СМИ редко освещают судоходную отрасль. Автор Роуз Джордж называет это состояние «морской слепотой»[107].

За последние годы морские суда произвели 3,1 процента годовых глобальных выбросов углекислого газа, что больше, чем в Германии в совокупности[108]. Для минимизации внутренних затрат большинство компаний, занимающихся контейнерными перевозками, в огромных количествах используют низкосортное топливо, что приводит к повышенному содержанию в воздухе серы и других токсичных веществ. По оценкам, один контейнеровоз выбрасывает в атмосферу столько же загрязняющих веществ, сколько вырабатывают пятьдесят миллионов автомобилей, а шестьдесят тысяч ежегодных смертей косвенно объясняются загрязнением от грузовых судов[109].

Даже такие дружественные для отрасли источники, как Всемирный совет судоходства, признают, что тысячи контейнеров ежегодно теряются, опускаясь на дно океана или уходя в дрейф[110]. Некоторые контейнеры перевозят токсичные вещества, которые просачиваются в океаны; другие выпускают тысячи желтых резиновых уточек, и те в течение десятилетий выбрасываются на берег по всему миру[111]. Обычно работники проводят в море почти шесть месяцев, часто с длинными рабочими сменами и без доступа к внешней связи.

Наиболее серьезные издержки глобальной логистики ложатся на атмосферу Земли, океаническую экосистему и низкооплачиваемых работников. Корпоративные представления об ИИ не отражают долгосрочные затраты и длительную историю ресурсов, необходимых для создания вычислительных инфраструктур, и энергии, требуемой для их питания. Быстрый рост облачных вычислений, представляемых как экологически чистые, парадоксальным образом привел к расширению границ добычи ресурсов. Только лишь принимая во внимание эти скрытые затраты, а также обширные совокупности участников и систем, мы можем понять, что означает переход к большей автоматизации. Это требует работы против принципов технологического воображения, которое обычно совершенно не связано с земными делами. Например, поиск картинки «ИИ», который выдает десятки фотографий светящихся мозгов и двоичных кодов, парящих в космосе, оказывает мощное сопротивление взаимодействию с материальными аспектами этих технологий. Вместо этого мы начинаем с земли, с добычи и с истории индустриальной власти, а затем рассматриваем, как эти модели повторяются в системах труда и данных.

ИИ как мегамашина

В конце 1960-х годов историк и философ технологии Льюис Мамфорд разработал концепцию мегамашины, желая проиллюстрировать, что все системы, независимо от их размера, состоят из работы отдельных людей[112]. Согласно Мамфорду, Манхэттенский проект стал определяющей современной мегамашиной, тонкости которой скрывались не только от общественности, но даже от тысяч людей, которые работали над ней на охраняемых объектах по всей территории США. В общей сложности 130000 человек трудились в тайне под руководством военных, разрабатывая оружие, которое должно было убить (по самым скромным подсчетам) 237000 человек, упав на Хиросиму и Нагасаки в 1945 году. Создание атомной бомбы зависело от сложной, секретной цепи поставок, логистики и человеческого труда.