Конечно, Корбино был прав: этот патент, который был оформлен вначале в Италии, а затем и в других странах, оказался очень полезным для изобретателей после того (1950 г.), как замедление нейтронов стало широко использоваться.
Открытие замедляющего эффекта водорода вызвало необходимость решить ряд новых проблем, и скоро наряду с изучением радиоэлементов, образованных нейтронами, важную роль в работе стали играть уже исследования свойств самих нейтронов (замедление, рассеяние, поглощение и т. д.).
Результаты работ, выполненных в первые три месяца после открытия явления замедления нейтронов, достаточно подробно изложены в статье, представленной Резерфордом в «Proceedings of the Royal Society». В этой статье содержатся практически все основные идеи физики медленных нейтронов, за исключением, конечно, важнейшего вопроса о «группах нейтронов» и нейтронных резонансах, который, кстати, Ферми удалось полностью обосновать и разобрать через год. Как видно, темп работ был потрясающим! При этом в лаборатории никогда не ощущалось спешки и Ферми был всегда спокоен.
После открытия эффекта замедления систематически проводились и облучения урана (и тория) с парафином и без него. Однако загадка множественности обнаруженных активностей не была решена Ферми; для этого потребовалось открытие деления Ганом и Штрассманом (1939 г.). Сейчас мне кажется чудом, что Ферми с его глубиной и интуицией не сумел теоретически предугадать процесс деления.
Что же касается экспериментов с ураном, то группе Ферми в это время не повезло: деление могло быть открыто экспериментально в Риме в январе 1935 г., если бы не случайные обстоятельства. Несколько слов об этом. Среди многочисленных активностей, вызванных в уране и тории нейтронами, согласно Ферми, могли бы находиться и α-активности. Эти α-активные радиоэлементы с периодом больше нескольких секунд искались, но не были найдены. Тогда была рассмотрена возможность того, что при бомбардировке урана и тория медленными нейтронами α-частицы испускаются мгновенно, как это было найдено нами в боре. Аппаратура для наблюдения α-частиц была той же самой, которая использовалась для экспериментов с бором. Итак, образец из окиси урана бомбардировался в парафине медленными нейтронами; образец находился перед малой импульсной ионизационной камерой, соединенной с линейным усилителем, способным регистрировать импульсы ионизации от α-частиц. Так как ожидалось, что искомые α-частицы имеют больший пробег, чем естественные α-частицы от урана, то для уменьшения фона последних перед урановым образцом была помещена алюминиевая фольга толщиной, эквивалентной 5 см воздуха. Именно эта фольга и помешала наблюдению больших импульсов ионизации, обусловленных осколками деления! Не раз в 1939 г. и позже сотрудники Ферми обсуждали случай со «зловредной» алюминиевой фольгой и задумывались над вопросом: «Допустим, что мы в 1935 г. наблюдали большие импульсы ионизации от урана; сумел бы Ферми понять явление, т. е. открыть деление?»
С. С. ГерштейнИнститут физики высоких энергий, ПротвиноВоспоминания и размышления о Бруно Понтекорво
Я пишу эти воспоминания — и передо мной как живой возникает Бруно Максимович с его неизменной улыбкой, юмором, интересом к людям, жаждой новых знаний, с его тактом и глубокой демократичностью, благодаря которой он совершенно одинаково мог говорить и с людьми самого высокого положения, и с рабочими из мастерских, с его нетерпимостью к любой фальши и особенно к профанации науки, с его готовностью оказать всяческую поддержку новым интересным экспериментальным исследованиям.
Бруно Максимович принадлежал к той замечательной плеяде физиков, трудами которых были заложены основы современной ядерной физики, ядерной энергетики и технологии, физики элементарных частиц.
Хорошо известно, что именно опыты, которые проводил молодой Понтекорво совместно с Амальди в группе Ферми, послужили толчком к открытию замедления нейтронов — эффекта, лежащего в основе работы современных ядерных реакторов, производства многих важных изотопов, сыгравшего (и играющего) важную роль в физических исследованиях.
Именно Понтекорво в 1946 г., когда были получены первые сведения о сравнительно большом времени жизни мюонов в веществе, предложил гипотезу об универсальном характере слабых взаимодействий — новой силы Природы, единственным известным проявлением которой до этого был радиоактивный β-распад. Именно Бруно явился отцом экспериментальной нейтринной физики, выдвинув в 1946 г. идею о возможности регистрации свободного нейтрино от ядерных реакторов и разработав для этой цели радиохимический (в частности так называемый хлор-аргонный) метод детектирования ядерных реакций, вызываемых нейтрино.
В своем знаменитом отчете лаборатории в Чок-Ривере в Канаде Бруно пророчески коснулся и других аспектов нейтринной физики, упомянув в качестве возможных источников нейтрино Солнце и ускорители. Эти идеи Бруно, как мне кажется, явились отражением его человеческих качеств — необычайной научной смелости и широты. Действительно, в то время мало кто верил в осуществимость таких опытов. Даже Э. Ферми, как вспоминает Бруно, отнесся весьма прохладно к идее регистрации нейтрино, заинтересовавшись больше техникой пропорциональных счетчиков, развитой Понтекорво и применявшейся им в ряде исследований («Дон-Кихот не был героем Ферми», — замечал в этой связи Бруно).
Идеи и расчеты Бруно подтолкнули эксперимент. Когда была разработана техника больших сцинтилляторов (которой не существовало в 1946 г.), оказалось возможным прямое детектирование нейтрино, что и было осуществлено Райнесом и Коуэном в 1953–1956 гг. Хлор-аргонный метод был впоследствии развит Дэвисом. С помощью него было впервые установлено, что антинейтрино не тождественны нейтрино, и зарегистрировано нейтрино от Солнца.
В то время, когда Бруно выдвигал свое предложение о регистрации нейтрино, было неизвестно, что цепочка термоядерных реакций, происходящих в Солнце, может (хотя и с довольно малой вероятностью) приводить к образованию ядер 7Be и 8B, которые являются источниками довольно энергичных нейтрино, способных вызывать хлор-аргонную реакцию: ν + 37Cl → 37Ar + e−. Именно эти нейтрино и были зарегистрированы Дэвисом с помощью предложенного Бруно хлор-аргонного метода. Что же касается основного потока солнечных нейтрино, происходящих от слияния двух протонов в дейтерий с испусканием позитрона и нейтрино, то ввиду малости энергий этих нейтрино Бруно не видел в 1946 г. возможности их регистрации. Оказалось, однако, что предложенный им радиохимический метод годится и для этой цели[21].
Результаты экспериментов по регистрации солнечных нейтрино находятся сейчас в центре внимания физиков всего мира. Это связано с еще одной блестящей идеей Понтекорво. В 1957 г. он указал на возможность нейтринных осцилляций. Оказалось, что нейтринные осцилляции могут быть тесно связаны с великим объединением различных взаимодействий при сверхвысоких энергиях. Поиски нейтринных осцилляций уже много лет ведутся в различных лабораториях мира на реакторах, ускорителях, мезонных фабриках, составляя важную часть программы исследований. Однако, как указал Понтекорво, только солнечные нейтрино (вследствие огромного по сравнению с земными масштабами расстояния от источника) дают возможность продвинуть исследования в совершенно недоступную для земных экспериментов область малых значений масс нейтрино. Именно таких значений масс нейтрино можно ожидать на основе моделей великого объединения. Поэтому когда в первых экспериментах по регистрации солнечных нейтрино было обнаружено уменьшение их потока в два-три раза по сравнению с расчетами, Понтекорво первый высказал мысль, что это может быть связано именно с нейтринными осцилляциями, переводящими электронное нейтрино в другие, «стерильные» состояния, не вызывающие ядерных реакций.
Сейчас, после замечательной работы С. Михеева и А. Смирнова, в которой было показано, что учет когерентного рассеяния нейтрино в веществе (рассмотренного Л. Вольфенштейном) может значительно усилить нейтринные осцилляции при малых разностях их масс и малом смешивании (и даже привести к полному переходу нейтрино в «стерильные» состояния), идея Б. Понтекорво является наиболее правдоподобным объяснением результатов галлиевого, хлор-аргонного и электронного (Камиоканде) экспериментов по детектированию солнечных нейтрино.
Подготавливаемые в нескольких лабораториях мира новые гигантские эксперименты позволят в недалеком будущем надежно проверить эту возможность. Так идеи Бруно прокладывают путь в физику следующего столетия, позволяя получить сведения о великом объединении сил природы. Это не единственный пример того, как идеи и эксперименты Бруно послужили началом ведущихся десятилетиями с возрастающей точностью экспериментов. К ним относятся, например, поиски распада μ → eγ и определение массы электронного нейтрино по спектру β-распада трития, начатые Понтекорво почти полвека тому назад. Я не стану упоминать других блестящих работ Понтекорво. Мне хотелось только подчеркнуть здесь значение работ Понтекорво для физики XX и XXI веков.
Бруно приехал в Советский Союз в 1950 г., когда ему было 37 лет и он был в расцвете творческих сил. За время жизни в СССР Б. Понтекорво выполнил ряд блестящих исследований, включая прецизионные опыты по рассеянию π-мезонов на нуклонах, несохранению четности в μ-распаде, захвату мюонов в 3He, проверке гипотезы о парном рождении странных частиц в нуклон-нуклонных столкновениях, которую он, кстати, высказал еще до появления схемы Гелл-Манна — Нишиджимы, и много других. Он высказал здесь свою знаменитую гипотезу о возможности нейтринных осцилляций и роли детектирования солнечных нейтрино для их обнаружения, указал на возможность проведения нейтринных исследований па ускорителях (в частности, для решения проблемы, тождественно мюонное нейтрино электронному или нет). Понтекорво оказал неоценимое влияние на уровень исследований по физике элементарных частиц в нашей стране, установив очень высокие критерии, которым необходимо было так или иначе следовать, воспитал большую школу экспериментаторов и стимулировал многие теоретические работы. Постановка многих важных новых экспериментов у нас зачастую становилась реальностью благодаря активной поддержке, которую оказывал им Понтекорво.