Авария на ЧАЭС и атомная энергетика СССР — страница 4 из 30

фита несет на себе достаточно большое количество радиоактивных источников. Значит, перед нами встала сложная задача. Обычная скорость горения графита составляет где‑то тонну в час. В 4‑м блоке было заложено около двух с половиной тысяч тонн графита. Следовательно, при нормальном горении эта масса могла бы гореть 2400 часов, унося с продуктами своего горения ту радиоактивность, которую могла набрать и распространить на большие территории.


При этом температура внутри разрушенного блока, скорее всего, была бы ограничена температурой горения графита, то есть, в районе полутора тысяч градусов или чуть выше, но выше бы не поднималась. Установилось бы некоторое такое равновесие. Следовательно, топливо, таблетки окиси урана, могли бы расплавиться и не давать дополнительного источника радиоактивных частиц. Но этот многодневный вынос радиоактивности с продуктами горения, конечно, привел бы к тому, что огромные территории оказались бы интенсивно заражены различными радионуклидами. Радиационная обстановка предполагала какие‑то эффективные действия. Но их представлялось возможным производить только с воздуха и с высоты не менее чем 200 метров над реактором, а соответствующей техники, которая позволяла бы, скажем, традиционно с помощью воды и пены и других средств завершить гашение графита, не было.


Надо было искать нетрадиционные решения — и мы начали думать об этих нетрадиционных решениях. Нужно сказать, что наши размышления сопровождались постоянными консультациями с Москвой, где у аппарата ВЧ постоянно находился, скажем, Анатолий Петрович Александров. Активно участвовал в наших рассуждениях целый ряд сотрудников Института атомной энергии, сотрудники Министерства энергетики. Каждая служба — например, пожарные по своей части — держали соответствующую связь со своими Московскими организациями. Уже на второй день пошли различные телеграммы, предложения. Из‑за рубежа предлагали вообще разные варианты воздействия на горящий графит с помощью различных смесей.


Логика принятия решения была такая. Прежде всего, нужно было ввести столько, сколько можно, боросодержащих компонентов, которые при любых перемещениях топливной массы, при любых неожиданных ситуациях, обеспечили бы в кратере разрушенного реактора достаточно большое количество эффективных поглотителей нейтронов. К счастью, на складе оказалось незагрязненным достаточно большое количество (40 тонн) карбида бора, который и был прежде всего с вертолетов сверху заброшен в жерло разрушенного реактора.


Таким образом, первая задача — задача введения нейтронного поглотителя максимального размера и количества — была выполнена быстро и оперативно.


Вторая задача — задача, связанная с введением таких средств, которые стабилизировали бы температуру, заставляя энергию, выделяющуюся при распаде мощной топливной массы, затрачиваться на фазовые переходы. Первое предложение, которое, скажем, мне пришло в голову и которое было мною предложено, — забросать в реактор максимальное количество железной дроби. На станции ее было достаточно большое количество. Это железная дробь, которая вводится обычно в бетон при строительстве, чтобы сделать его тяжелым. Но оказалось, что склад, на котором эта железная дробь хранилась, во‑первых, был накрытым проходящим первичным облаком после взрыва, и работать с сильно зараженной дробью было практически невозможно. Во‑вторых, нам не была известна температура, при которой возможно стабилизировать процесс. Скажем, если там средне-массовая температура была бы существенно меньше, чем температура плавления железа, тогда введения железа с этой целью было бы недостаточно. По крайней мере, потому, что мы пропустили бы момент возможной стабилизации температуры на более низком уровне. Поэтому в качестве таких стабилизаторов температуры были предложены и после многочисленных консультаций и обсуждений выбраны два компонента: свинец и доломит. Первый — ясно: он плавится при низкой температуре. Во‑первых, легкоплавкий металл. Во‑вторых, обладает некоторой способностью экстрагировать радиоактивные элементы. В‑третьих, он способен, застывая, относительно в холодных местах создавать защитный экран от гамма‑излучения. И поэтому это решение — правильное. Конечно, оставалась опасность того, что температуры существенно более высокие, то заметная часть свинца может испариться и где‑то там при обыкновенной температуре 1600–1700°, и тогда в дополнение к радиоактивному загрязнению может возникнуть свинцовое загрязнение местности, и с эффективной стороны роли этот компонент не сыграет.


Поэтому группа из Донецка, принадлежащая Министерству энергетики Украины, была отдана в мое распоряжение. Они располагали шведской фирменной (фирмы «Ада») техникой, тепловизорами, начали постоянные облеты четвертого блока, фиксируя температуру поверхности. Задача была непростая потому, что датчиками в этих тепловизорах служат полупроводники, и нужно было ухитриться правильно интерпретировать результат, имея в виду, что мощное гамма‑излучение, попадающее на полупроводник, существенно искажало результаты измерения. Поэтому я предложил наряду с вот такими тепловизорными измерениями температуры 4‑го блока, производимыми с воздуха, дополнить эти измерения с земли прямыми термопарными измерениями.


Эту операцию осуществлял Евгений Петрович Рязанцев вместе с вертолетчиками. На длинных фалах опускали термопары. Это тоже была непростая работа — измерить температуру поверхности.


И, наконец, поскольку продолжалось горение графита, то мною было предложено в различных точках разрушенного реактора производить воздухозабор проб и направлять в Киев для определения компонент СО и СО2 и их соотношения, по которым хотя и с не очень большой точностью, но все-таки можно было судить о максимальных температурах, в которых находится разрушенный 4‑й блок. Совокупность всех данных привела нас к тому, что в зоне реактора существуют, но небольшие области высокой температуры, максимум, который нам удалось обнаружить, составлял 2000°C. Ну, а основные поверхности проявляли себя в области температуры, не превышающей 300°C. Поэтому в этом смысле заброс свинца мог быть эффективным. После таких оценок было принято соответствующее решение, и 2400 тонн свинца в различных его формах были введены вертолетными службами с высокой точностью и с большим мастерством.


Количество вводимого свинца возрастало день ото дня. Я был поражен тем темпом, тем масштабом, с которым весь необходимый материал был доставлен для выполнения этой операции.


Но учитывая, что были высокотемпературные области, было решено использовать и карбонат, содержащий породы, в частности, доломит, назначением которого было то же самое. Там, где возможно было стабилизировать температуру, затратив энергию на разложение доломитовых компонентов, оставался MgOA — оксид, довольно хорошо проводящий тепло, и, как свинец, попавший на место, расширяющий зону теплоизлучения, теплопроводя по всем металлическим конструкциям выделяемое тепло. Но оксид магния, конечно, не металл. Теплопроводность его безкорментна и больше, а образующийся оксид в природе нарушал концентрацию кислорода в зоне горения и способствовал прекращению горения. Вся эта группа металлов по этой примерно логике и вводилась в зону разрушенного реактора.


Анатолий Петрович Александров очень советовал нам начать вводить глины, которые являются неплохими сорбентами для выделяющихся радионуклидов. Вводимые глины и большое количество песка просто как фильтрующего слоя способно задержать возможный случай, если начнут все-таки плавиться таблетки с двуокисью урана, начнут выделяться радиоактивные компоненты, чтобы часть из них хотя бы задержать внутри реактора.


Ясно, конечно, что сброс любых предметов с 200‑метровой высоты создавал сложную ситуацию вокруг 4‑го блока, — потому что каждый сброс тяжести весом более 200 кг с высоты 200 метров поднимал вверх облако пыли после удара, и пыль эта несла с собой много радиоактивности, но образуемые частицы, поднимающиеся в это время наверх, агломерировались, укрупнялись и выпадали где‑то в зоне 4‑го блока или, по крайней мере, на площадке станции. И в этом смысле даже само облако играло роль защиты для того, чтобы мелкие аэрозольные частицы не продвигались на более существенные расстояния, чем зона самой станции. Судя по характеру выноса радиоактивности из зоны 4‑го блока как по величине, так и по динамике этого выноса, все эти мероприятия оказались достаточно эффективными, и заметная часть активности была локализована, не распространилась на большие расстояния, за исключением, скажем, какого‑то количества цезия и стронция — наиболее низкоплавкой компоненты топлива.


Так, в общем, эта сумма мероприятий позволила как‑то закупорить четвертый блок, создать фильтрующий слой, не допустить плавления самого топлива в силу возможности проведения… то есть, не проведения, а естественного прохождения достаточно большого количества эндотермических реакций. И все это позволило ограничить заметным образом зону распространения радиоактивности из района 4‑го блока станции на удалённые территории.


Это мероприятия, связанные с локализацией. Эти решения принимались 26-го вечером, а реализовывались по этой схеме с 26-го апреля по 2 мая включительно.


Вот основной период, когда осуществлялся очень интенсивный заброс всех материалов. После 2‑го мая заброс был прекращен, несколько дней была пауза. Затем где‑то после 9‑го мая при облете 4‑го блока было обнаружено пламенеющее пятно то ли графитовой кладки, то ли какой‑то металлической конструкции достаточно высокой температуры. Туда было сброшено ещё 80 тонн свинца. Это был последний массированный сброс материалов в зону 4‑го реактора.


Кроме сброса материалов (который имел назначение стабилизировать температуру внутри 4‑го блока, либо создать необходимый фильтрующий слой в зоне 4‑го реактора), по предложению Бориса Венеаминовича Гидаспова — члена‑корреспондента АН, который прибыл на помощь работающей там группе (это было уже позднее, где‑то после 10 мая) — осуществлялась операция по пылеподавлению. Соответствующие растворы, содержащие пыленеобразующие материалы заливались в пластиковые мешки, забрасывались в зону реактора, где при падении они разрывались, раствор покрывал значительную поверхность разрушенного блока, и полимеризуясь, застывал там тоже. Дополнительно такой фильтрующий слой создавался на материалах, способных к пылению и дальнейшему распространению. Все это были мероприятия, намеченные, повторяю, 26-го апреля вечером. В общем, во всей своей совокупности они длились где‑то до 12-го, может, 15-го мая, причём загрузка основных материалов была закончена, как уже было сказано, 2‑го мая.