осмической.
Кстати, в рамках программы «ASSET 5» 8 декабря 1964 г. состоялся первый запуск масштабной модели ракетно-космического самолета «Дайна Сор». В этот день с мыса Канаверал был осуществлен пуск модели летательного аппарата по суборбитальной траектории с помощью баллистической ракеты «Тор». Цель пуска по суборбитальной траектории – изучение аэродинамического обтекания самолета при движении в верхних слоях атмосферы. Максимальная высота подъема макета составила 53 км.
Целью программы ASSET было исследование аэротермодинамических характеристик, прочности и упругости конструкции. Дальнейшим продолжением работ стала программа START, предусматривавшая исследование вопросов входа в плотные слои атмосферы космических аппаратов, использующих подъемную силу. В рамках программы START исследования проводились по двум направлениям:
– запуск беспилотных аппаратов SV-5D (подпрограмма PRJME), в период с 21 сентября 1966 по 19 апреля 1967 г. выполнено три запуска ракетой-носителем «Атлас» с авиабазы ВВС Ванденберг в Калифорнии. Достигнута максимальная высота полета 152,4 км и скорость 7,37 км/ сек.
Первые два аппарата при входе в плотные слои атмосферы разрушились, третий аппарат вернулся благополучно;
– исследование пилотируемых гиперзвуковых летательных аппаратов на малых скоростях полета (подпрограмма PJLOT). Подрограммой PJLOT, а также программой NASA MLBRP предусматривались летные исследования пилотируемых летательных аппаратов с несущим корпусом Х- 24А, Х-24В, M2-F1, M2-F2, HL-10 на дозвуковых и сверхзвуковых режимах полета. Целью испытаний являлось исследование ручного управления, обеспечение устойчивости и управляемости и горизонтальной посадки возвращаемых орбитальных самолетов с низким аэродинамическим качеством.
M2F-I в полете но привязи зо самолетом-буксировщиком, 1964 г.
M2-F2 на ВПП испытательного центра им. Драйдена, 1966 г.
M2F-3 на поверхности высохшего озера Роджерс, авиабаза Эдварде, 1970 г.
HL-10, на поверхности высохшего озера Роджерс, авиабаза Эдварде, 1968 г.
Х-24А, авиабаза Эдварде, 1967 г.
Х-24В, авиабаза Эдварде, 1972 г.
К моменту выпуска в СССР аванпроекта «Спирали» в США уже проводились полеты пилотируемых аппаратов M2-F1 (всего было выполнено 100 полетов за самолетом-буксировщиком с последующей отцепкой на высоте 3600 м), M2-F2 (16 полетов) и HL-10 (24 полета). Разумеется, результаты этих испытаний, включая анализ причин аварии при посадке аппарата M2-F2, были известны в ОКБ Микояна.
Но продолжим рассказ об орбитальном самолете «Спираль»… Носовое затупление выполнено в виде шестидесятиградусного сегмента с радиусом образующей сферы 1,5 м.
На атмосферном участке спуска с орбиты на углах атаки самолета в диапазоне 45-65 градусов сегмент располагается под углом ±10 градусов к потоку. С учетом лучистого теплообмена с менее нагретой верхней обшивкой это обеспечивает максимальную температуру на носовом затуплении 1400 градусов С. Уменьшение влияния колебаний угла атаки на повышение температуры достигается выбором необходимого запаса устойчивости и автоматики, ограничивающих колебания по углам атаки и скольжения в пределах +10 и ±4 градуса соответственно.
Нижняя поверхность самолета выполнена близкой к плоскости с малым радиусом скругления кромок.
Плоская нижняя поверхность и расчетный по температуре диапазон углов атаки на спуске 45-65 градусов обеспечивают получение максимального коэффициента подъемной силы, а, следовательно, минимальную температуру поверхности. Интересная деталь: при расчете максимальных температур поверхности самолета на участке интенсивного торможения в атмосфере при спуске с орбиты не учитывались каталитические свойства поверхности и различия между ламинарным и турбулентным обтеканием набегающего потока – очевидно, по причине отсутствия надежных расчетных методик.
Большие градиенты температур сосредоточены на радиусном переходе между нижней и боковой поверхностями, где применением специальных конструкций исключается появление больших температурных напряжений и коробления. Боковые поверхности корпуса выполнены в виде плоскостей, установленных под значительным отрицательным углом встречи с потоком для уменьшения тепловых потоков внутрь фюзеляжа. Форма верхней поверхности выбрана из условия получения потребных внутренних объемов, при этом обеспечено хорошее обтекание корпуса самолета на дозвуке. На гиперзвуке верхняя поверхность находится в затененной (срывной) зоне, что обеспечивает низкие температуры ее поверхности (менее 500 градусов С).
Стреловидное крыло (55 градусов по передней кромке) самолета имеет V-образную форму. Консоли крыла (площадь каждой 33 м 2 ) с размещенными на них элевонами выполнены поворотными (отклоняющимися вверх) для исключения их прямого обтекания тепловым потоком при прохождении участка плазмообразо- вания. Угол подъема консолей, измеряемый от горизонтальной плоскости, мог варьироваться от 115 градусов (25 градусов «внутрь» от вертикального положения консолей) при старте на РН «Союз» для компактного размещения под головным обтекателем РН до промежуточных положений в 60-45 градусов (от горизонтали) на этапе интенсивного торможения (нагрева). Положение и форма консолей выбраны так, чтобы при спуске с орбиты самолет самобалансировался в расчетном по температуре диапазоне углов атаки (45-65 градусов) при гиперзвуковом качестве 0,8-0,9 и при обтекании самолета на этих углах атаки поток стекал с корпуса на крыло, а не набегал на его передние кромки. Это должно было обеспечить низкий уровень температур на консолях при оптимальных значениях гиперзвукового аэродинамического качества.
Одновременно положение консолей крыла 45 градусов обеспечивает необходимый запас боковой динамической устойчивости в связи с неэффективным вертикальным оперением (килем с рулем направления) на указанных режимах полета. Расчетная схема обтекания крыла и корпуса была подтверждена продувками масштабной модели в аэродинамических трубах ЦАГИ.
Ферма фюзепяжа Вид снизу
Ферма фюзепяжа Вид сверху
Чтобы улучшить посадочные характеристики, на последнем, атмосферном, участке спуска была предусмотрена перебалансировка аппарата на малые углы атаки с максимальным раскладыванием консолей в фиксированное крыльевое положение (до 30 градусов), при этом размах крыла достигал 7,4 м. Таким образом, благодаря выбранной аэродинамической компоновке, из общего размаха на стреловидные консоли крыла приходилось лишь 3,4 м, а остальная, большая часть несущей поверхности соотносилась с шириной фюзеляжа.
Хорошее обтекание самолета на дозвуковых скоростях позволило получить аэродинамическое качество К=4,5 и коэффициент подъемной силы 0,6-0,8, что при выбранной удельной нагрузке 190 кг/м2 обеспечивало посадочную скорость, не превышающую 250 км/час, как и у обычных скоростных самолетов. Путевую устойчивость обеспечивал киль (стреловидность по передней кромке 60 градусов), оснащенный рулем направления. Высота самолета при сложенном крыле составляла 2,5 м.
В большинстве публикаций о «Спирали» говорится о возможности раздельного изменения угла поперечного V для каждой консоли с целью управления орбитальным самолетом по крену на участке атмосферного спуска. Это распространенное заблуждение о способе управления по крену для всех вариантов орбитального самолета «Спирали» впоследствии распространилось и на орбитальный самолет, прорабатывавшийся в рамках проекта создания Многоцелевой авиационно-космической системы (МАКС). И хотя на самом деле раздельное изменение угла поперечного V не использовалось, «нет дыма без огня»…
Введение на орбитальном самолете поворотных консолей крыла с расположением на них элевонов для управления по тангажу и крену выявило проблему обеспечения поперечного управления (по крену) на сверх- и гиперзвуковых режимах движения. Суть этой проблемы в следующем. В посадочной конфигурации, когда консоли крыла разложены, т.е. находятся в «самолетном» положении, схема управления креном с помощью элевонов ничем не отличается от обычного поперечного управления самолетов нормальных схем с помощью элеронов: когда летчик отклоняет ручку управления (штурвал) вправо, то самолет кренится на правое крыло, и наоборот.
На сверх- и гиперзвуковых скоростях полета, когда консоли крыла орбитального самолета приведены в положение 60-45 градусов от горизонтали (30-45 градусов от плоскости симметрии), элевоны, расположенные на них, сохраняют свои функции как орган управления по тангажу, но дают обратную реакцию орбитального самолета по крену. В этом случае, если летчик отклоняет ручку управления вправо, то ОС кренится влево, и наоборот. Такая смена реакции по крену при изменении геометрии (раскладывании консолей крыла) орбитального самолета является совершенно неприемлемой для летчика.
Следует отметить, что на этапе спуска орбитального самолета с орбиты (участок полета с гиперзвуковыми и сверхзвуковыми скоростями) летчик управляет только углами атаки (тангажом) и крена, а управление траекторией движения в боковой плоскости происходит за счет подъемной силы при создании крена того или иного знака. Таким образом, формирование надежной системы управления креном на указанных режимах имело принципиальное значение. Наличие обратной реакции по крену на высоких скоростях при «недоразложенных» консолях крыла выяснилось в октябре 1967 года, о чем сразу было доложено Владимиром Александровичем Тру- факиным Лозино-Лозинскому, Как позднее вспоминал Владимир Александрович, ему показалось, что в первоначальный момент Главный конструктор не сразу доверился «фантазиям» молодого специалиста, но уже через 2-3 недели он организовал серьезное обсуждение поставленной проблемы, на котором предложил организовать схему управления креном с помощью дифференциального отклонения консолей крыла.
Однако после соответствующих проработок этот вариант отпал, прежде всего, из-за малого быстродействия поперечного управления по указанной схеме – максимальная скорость отклонения консоли не превышала 5 угловых градусов в секунду, что было совершенно недостаточно.