Автомобильные присадки и добавки — страница 14 из 44

линоптилолит, морденит, фожазит, шабазит. В отличие от кристаллогидратов (серпентинов и бёмита), также выделяющих значительное количество воды при нагреве, цеолиты поглощают и выделяют не только воду, но и другие молекулы без изменения кристаллической структуры.

Цеолит — (греч. zéo — киплю и lithos — камень, т. е. «кипящий камень») — большая группа близких по составу и свойствам минералов и синтетических веществ, служащих для разработки и производства ряда каталитических препаратов автохимии.

Химический состав цеолитов в обобщенном виде может быть представлен формулой: Mx/n(AlO2)x. (SiO2)y. zH2O, где М — катионы с валентностью n (обычно это Na+, K+, Ca2+, Ba2+, Si4+, Mg2+), z — число молекул воды, а отношение у/х может изменяться от 1 до 5 для различных видов цеолитов. Например, основной состав природных цеолитов Сокирницкого месторождения,%: SiO2 — 71,5; Al2O3 — 13,1; Fe2O3 — 0,9; MnO — 0,19; MgO — 1,07; CaO — 2,1; Na2O — 2,41; K2O — 2,96; P2O5 — 0,033; SO3 — следы. В качестве основных микропримесей могут содержаться: никель, ванадий, молибден, медь, олово, свинец, кобальт и цинк.

Цеолиты имеют строго определенный диаметр входных отверстий (от 0,3 до 1 нм в зависимости от вида минерала) и являются высокоактивными адсорбентами (рис. 11).

Рис. 11. Внешний вид минерала и нанопористая структура цеолита

В настоящее время известно более 600 видов цеолитов и только около 50 из них имеют природное (естественное) происхождение. Искусственные или синтетические цеолиты имеют классификацию А; Х и Y . Цеолиты, вследствие особенностей своей структуры, обладают высокой адсорбцией — концентрированием вещества из газовой фазы на поверхности твердого тела (адсорбента) или в порах, образуемых его структурой. При использовании цеолитов в качестве адсорбирующего элемента происходит молекулярно — ситовый отбор при сорбции молекул из газа в жидкости, позволяющей разделять молекулярные смеси в интервале размера молекул 10…20 нм.

Рассмотрим рекомендации по применению некоторых металлокерамических материалов и механизм их восстанавливающего действия.

Для машин с разной степенью износа и пробегом от 50 000 км пробега и выше рекомендуется:

1. Слить старое масло, промыть двигатель.

2. Залить новое масло и прогреть двигатель до температуры охлаждающей жидкости 70…80 °C.

3. Исключить подачу топлива в карбюратор и выработать из него весь бензин.

4. Вывернуть свечи и через каждое свечное отверстие ввести в каждый цилиндр по 5…10 мл состава.

5. Не вворачивая свечей, стартером 5…6 раз прокрутить двигатель в течение 10 с, каждый раз с интервалом между попытками в 30…40 с.

6. Ввернуть свечи, подать топливо в карбюратор и запустить двигатель.

7. Оставшийся состав влить в заливную масляную горловину. Поднять обороты коленчатого вала двигателя до 3000…3500 об/мин и поддерживать их в течение 10…15 мин. По указаниям производителей, это очень важный момент обработки, так как снижение оборотов двигателя или его остановка может существенно повлиять на результаты обработки.

8. Произвести замену масляного фильтра после пробега 1500…2000 км. Моторное масло можно не менять до 50 000 км пробега, чем обеспечиваются наилучшие показатели обработки.

Однако единого мнения по применению геомодификаторов нет. По одним источникам, геомодификаторы рекомендуется применять после пробега около 1000 км, что обосновывается лучшими условиями и наглядностью обработки.

Другие рекомендуют применять геомодификаторы не только для автомобилей с пробегом, но и для новых автомобилей. В этом случае предлагается вводить состав непосредственно в моторное масло, при соблюдении остальных требований к обработке, а смену масляного фильтра рекомендуется производить после 5…6 тыс. км пробега.

Восстановление и упрочнение подвижных соединений металлокерамическими материалами осуществляется за счет формирования на поверхностях трения структур повышенной прочности, подавления процессов водородного изнашивания и охрупчивания металла, повышения термодинамической устойчивости системы поверхность трения — смазочный материал. Поверхностно — активные вещества (ПАВ) металлокерамического восстановителя после введения в системы двигателя подготавливают поверхности трения химически (катализ) и физически (суперфиниш), очищая их от нагара, оксидов, отложений и т. д.

Для получения необходимого эффекта от применения геомодификатора должно произойти его разрушение по формуле

Mg6{Si4O10}(OH)8 = 3Mg2{SiO4} + SiO2 + 4H2O,

до этого времени он (например, серпентин) работает, как простой абразив.

После разложения геомодификатора в очищенную зону трения вместе с катализатором происходит внедрение его керамических и металлокерамических частиц (фибрилла). Зона контакта обедняется свободным водородом, а поверхностные слои вследствие диффузии изменяют свою структуру и увеличивают прочность в несколько раз. В процессе дальнейшей работы на поверхностях трения формируется органо — металлокерамическое покрытие, частично восстанавливающее дефекты поверхности трения и обладающее высокими антифрикционными и противоизносными свойствами.

Металлокерамический защитный слой, который получается на поверхностях трения, может обладать уникальными триботехническими характеристиками:

— микротвердость 65…72 HRC;

— шероховатость 0,3…0,1 мкм;

— коэффициент трения 0,003…0,007;

— температура разрушения 1700…2000 °C.

При применении геомодификаторов в ДВС наблюдается некая оптимальная точка (момент времени) в процессе обработки, когда регистрируемый эффект достигает своего оптимального значения. Продолжение процесса обработки, как указывают ряд исследователей, может привести к ряду негативных последствий.

Наряду с высокой эффективностью геомодификаторов и РВС — технологии, остается множество нерешенных вопросов, связанных с их применением.

1. Так, исследованиями, проведенными в триботехнической лаборатории фирмы «ВПМАвто» установлено, что геомодификаторы увеличивают износ хромированного кольца в паре трения «хром — чугун» в два раза по сравнению с базовым вариантом, а также пары трения «вкладыш — шейка коленчатого вала». Это является следствием вдавливания (вкрапления) в более мягкой материал неразложившихся частиц геомодификатора и их функционирования как микрорезцов, закрепленных в пластичной матрице.

2. При обработке металлокерамическими материалами наблюдается выделение свободной воды. По данным, приведенным во втором томе советско — польского издания «Справочник по триботехнике. Смазочные материалы, техника смазки, опоры скольжения и качения», повышение ее содержания в моторном масле всего на 5 % приводит к росту интенсивности изнашивания до 10 раз.

3. Отмечается нарушение температурной стабильности обработанного двигателя вследствие дополнительного теплового сопротивления металлокерамического слоя (кстати, как и полимерного) отводу тепла от поршня через поршневые кольца. Всё это может привести к перегреву двигателя и его отказу, особенно на режимах перегрузок.

4. По этой же причине наряду со снижением концентраций в отработавших газах окиси углерода СО и углеводородов СН, наблюдается почти двукратный рост выхода окислов азота NО.

5. При применении РВС — технологии в периоды приработки из‑за возрастающих температур отмечаются случаи дополнительного сверхнормативного выгорания масла и отпуск (снижение прочностных свойств) термообработанных поршневых колец.

6. Большинство геомодификаторов представляют собой не что иное, как взвесь порошковых материалов в соответствующем носителе (осветительном керосине, минеральном масле и т. д.), которая, как и порошковые реметаллизанты, может задерживаться фильтрами, центрифугироваться и выпадать в осадок. Так, например, при безразборном восстановлении тепловозных дизелей разработчиками рекомендуется на период обработки вообще исключать из системы смазки фильтры тонкой очистки (центрифуги) моторного масла.

Поэтому при применении геомодификаторов необходимы следующие дополнительные рекомендации:

1. Показанием к применению должны быть результаты технического диагностирования двигателя, указывающего на то, что степень износа систем, подлежащих обработке препаратом, составляет не менее 50 %.

2. Если пробег после замены масла и масляного фильтра составил более 5 000 км, либо качество моторного масла не соответствует эксплуатационным требованиям, а также при наличии отказов деталей в узлах и механизмах автомобиля, подлежащих обработке, то восстановительная обработка не рекомендуется.

3. Качественная обработка геомодификатором требует строгого квалифицированного инструментального контроля первого этапа процесса восстановления, поэтому такую обработку целесообразнее и безопаснее проводить в автосервисах с получением гарантий качества обработки.

4. На наш взгляд, геомодификаторы целесообразнее всего применять в элементах трансмиссии и ходовой части. Обладая высокими водо- и грязеотталкивающими свойствами, они могут существенно понизить износ и температуру в зоне трения, в том числе и в открытых узлах, таких как шарниры карданных валов, цепная передача мотоциклов и т. д.

В заключение данного раздела следует отметить, что главной проблемой, существенно сдерживающей применение препаратов на основе геомодификаторов, является нестабильность их свойств, а как следствие, результатов обработки. Все это, прежде всего, обусловлено минеральной основой добавок с наличием множества неконтролируемых примесей и загрязнений. Разработка для таких присадок синтетических компонентов, свободных не только от балластных, а, прежде всего, от возможных абразивных компонентов, способна открыть новые перспективы для их широкого применения в автомобильной промышленности.

Кондиционеры металла (поверхности)

К отдельной группе РВП относятся кондиционеры (металла или поверхности). Это целый спектр различных препаратов автохимии, в основном на базе поверхностно — активных веществ (ПАВ) и химически — активных веществ (ХАВ), в том числе традиционно применяемых в смазочных материалах, но официально не именуемых кондиционерами.