Бабочка и ураган — страница 9 из 23

U, как показано на следующем рисунке. На второй итерации подкова превратится в другую подкову, состоящую из трех кривых в форме буквы U. На третьей итерации мы получим уже семь кривых той же формы, и так далее. В пределе имеем бесконечно запутанную кривую, очень похожую на гомоклиническую сеть, которая приводила в ужас Пуанкаре. И действительно, в растяжении и складывании заключен геометрический смысл хаоса.



Последовательные итерации при построении подковы Смэйла. Они заключаются в растяжении и складывании кривой в форме буквы U в границах исходной фигуры.


Последовательно выполняемые операции растяжения и складывания, характерные для подковы Смэйла, — верный признак хаоса. Следовательно, эти же операции вы встретите во многих хаотических отображениях. В качестве примера можно привести «отображение пекаря», названное так за сходство с операциями, выполняемыми при замешивании теста, или «отображение кота Арнольда», определенное В. И. Арнольдом (о нем мы расскажем позже), которое заключается в последовательном растяжении и складывании изображения головы кота. Но мы не будем растягивать и складывать голову кота, вместо этого используем более привлекательное изображение — фотографию модели Лины Седерберг, мисс Ноябрь журнала «Плейбой» 1972 года. С 1970-х годов фрагмент ее фотографии используется в качестве тестового изображения в алгоритмах сжатия изображений и, по сути, является стандартом в науке и технике. (И кто-то еще осмеливается заявлять, что математики — скучные люди!) Между прочим, номер «Плейбоя» с этой фотографией стал самым продаваемым за всю историю журнала.

Если мы несколько раз применим отображение кота Арнольда к этой фотографии, то есть будем последовательно растягивать и складывать ее определенным образом, то заметим, что уже через несколько итераций лицо модели станет неразличимым. Но после определенного числа итераций (а именно 192) лицо модели можно будет увидеть снова. Точнее говоря, можно будет увидеть очень похожее лицо — траектории динамических систем могут совпадать друг с другом, только если являются периодическими, а мы рассматриваем хаотическую орбиту. Тем не менее лицо Лины будет появляться и исчезать бесконечное число раз. Так проявляет себя хаос.



Отображение кота Арнольда на примере фотографии Лины Седерберг. Результатом многократного растяжения и складывания изображения (верхние ряды) будет однородное поле (центральные ряды). Однако на каком-то этапе некоторые точки будут располагаться вблизи исходных положений, и исходное изображение внезапно появится вновь (нижний ряд).


В худшем (или лучшем — с какой стороны посмотреть) случае динамическая система будет хаотической. В этом случае траектории, расположенные близко друг к другу, будут быстро расходиться по мере того, как они будут растягиваться, сжиматься и складываться по мере приближения к аттрактору. Эти преобразования определяют очень странное и сложное поведение, которое следует из теоремы Пуанкаре о возвращении.

В своем труде о новых методах небесной механики ученый сформулировал удивительную теорему: «Для данных уравнений определенной формы и произвольного частного решения любого из этих уравнений всегда можно найти периодическое решение — его период может быть очень большим — такое, что разница между этими решениями будет сколь угодно малой». Портрет Лины демонстрирует теорему Пуанкаре о возвращении: если повторно применять одно и то же преобразование к системе, которая не может выйти за определенные границы, она бесконечное число раз будет возвращаться в состояние, близкое к оригиналу. Иными словами, рано или поздно все вернется на круги своя. Существование периодического решения означает, что если мы проткнули колесо велосипеда, то достаточно подождать, когда оно наполнится воздухом само по себе. Через достаточно долгое время колесо вновь наполнится воздухом — так гласит теорема Пуанкаре. Единственная проблема в том, что ждать придется дольше, чем существует Вселенная.

* * *

ВЫ, КОНЕЧНО, ШУТИТЕ, МИСТЕР ФЕЙНМАН?

Ричард Филлипс Фейнман (1918–1988), эксцентричный американский физик, был удостоен Нобелевской премии по физике 1965 года за вклад в квантовую электродинамику. В число его хобби входил гипноз, посещение топлесс-баров и взлом сейфов. В своих популярных «Фейнмановских лекциях по физике» он приводит несколько примеров, при виде которых возникает вопрос: вы, конечно, знакомы с теорией хаоса, мистер Фейнман?

В разделе «Немного философии» главы 38 первого тома «Лекций…», опубликованном в 1965 году, Фейнман описывает, насколько классическая механика проникнута духом недетерминизма, который с практической точки зрения есть следствие неточности при определении начальных условий некоторых физических систем. Если бы мы знали положение и скорость всех частиц в мире, то смогли бы предсказать, что произойдет в будущем. Предположим, что нам неизвестно точное положение некоторого атома. Следовательно, после столкновения этого атома с другим ошибка при определении его положения увеличится, с каждым новым столкновением неточность будет нарастать, а по прошествии определенного периода времени величина нашего незнания будет невообразимо велика.

* * *

Математика по другую сторону «железного занавеса»

В это же самое время внутри «железного занавеса» существовала мощная советская школа. Ее представители, многочисленные физики и математики, унаследовали важные результаты, полученные Ляпуновым в ходе исследований устойчивости движения в динамических системах.

Математик и физик Александр Ляпунов (1857–1918), работавший примерно в то же время, что и Пуанкаре, использовал более количественный подход к теории устойчивости. Вместо того чтобы, подобно Пуанкаре, изучать геометрию траекторий, Ляпунов рассмотрел числа — так называемые экспоненты Ляпунова — которые служили индикаторами неустойчивости. Если какая-либо из этих экспонент была положительной, то траектории удалялись друг от друга (экспоненциально). В этом случае система была нестабильной.

В 1950-е годы основной темой семинаровАндрея Колмогорова (1903–1987) в Московском государственном университете была небесная механика: и он, и его ученик Владимир Игоревич Арнольд (1937–2010) занимались теоретическим изучением устойчивости динамических систем небесной механики, взяв за основу труды Пуанкаре и Ляпунова. Результатом этих исследований стала теорема, представленная Колмогоровым в 1954 году на Международном математическом конгрессе в Амстердаме.

Позднее юный немецкий математик Юрген Курт Мозер (1928–1999) захотел написать обзорную статью по этой теме для журнала Mathematical Reviews. Мозер настолько интересовался этой темой, что совершил поездку в Советский Союз, там он познакомился с Арнольдом, и результатом их совместной работы стала широко известная (среди специалистов) теория Колмогорова — Арнольда — Мозера. Эта теория описывает, что происходит, когда в интегрируемой (линейной) системе возникают неинтегрируемые (нелинейные) возмущения. Если эти возмущения достаточно малы, то большинство орбит будут подобны стабильным и квазипериодическим, то есть никогда не будут слишком далеко отклоняться от периодических орбит системы. В этой же ситуации будут наблюдаться и другие орбиты, предсказать поведение которых нельзя. Таким образом, в океане хаоса будут формироваться островки стабильности.

Если рассматривать Солнечную систему, то, поскольку масса планет по сравнению с массой Солнца пренебрежимо мала, в первом приближении можно пренебречь силами, действующими между планетами, и получить интегрируемую систему, в которой каждая планета будет двигаться по прекрасному кеплеровому эллипсу, что доказал Ньютон. Но если мы начнем учитывать взаимодействие между планетами, система уже не будет интегрируемой, о чем нам известно благодаря трудам Пуанкаре.

Планеты перестанут описывать идеальные эллипсы, и вполне возможно, что одна из них даже начнет движение по хаотической орбите и в конце концов покинет пределы Солнечной системы. С 1954 года благодаря теории Колмогорова — Арнольда — Мозера мы знаем, что незначительные отклонения нарушают равномерность лишь частично. И если предположить, что силы взаимодействия планет не слишком велики, то большинство их орбит будут близки по форме к эллипсам. Это не означает, что абсолютно все движения в пределах Солнечной системы должны быть равномерными — достаточно, чтобы равномерными были большинство движений.

Некоторые малые тела Солнечной системы могут двигаться по хаотическим орбитам. В конечном итоге они либо столкнутся с другими телами, либо покинут пределы Солнечной системы. Возможно, именно такой была судьба Хирона — астероида из группы Кентавров (наполовину астероида, наполовину кометы), движущегося по хаотической и неустойчивой орбите между Сатурном и Ураном.



Теория Колмогорова Арнольда — Мозера описывает островки регулярности в море хаоса.


Еще одной иллюстрацией теории Колмогорова — Арнольда — Мозера стало численное исследование, проведенное французским астрономом Мишелем Эно (род. 1931) совместно с аспирантом Карлом Хайлсом (род. 1939) в 1962 году при помощи нового инструмента — компьютера. Эно и Хайле хотели изучить движение звезд в галактиках в зависимости от их энергии. При низких энергиях решения уравнений были, как и ожидалось, периодическими или квазипериодическими. При высоких энергиях компьютер показывал, что периодические траектории постепенно размываются, и возникает целое море хаоса, в котором лишь иногда наблюдаются островки стабильности. Это была хаотическая система Эно — Хайлса.

Однако влияние советской школы этим не ограничивалось: во время холодной войны основные результаты, полученные советскими математиками, были переведены на английский. Европейские и американские математики смогли ознакомиться с ними благодаря трудам