Беседы о бионике — страница 11 из 107

Однако в наше время имеется немало совершенных технических средств и методов, позволяющих в значительной степени облегчить или даже обойти ряд трудностей, встречающихся при исследовании различных летных показателей птиц. Достаточно упомянуть, например, радары, используемые для определения высоты полета птиц, скоростные кинокамеры, применяемые для определения частот, амплитуд и скоростей взмахов крыльев, телеметрическую аппаратуру, используемую для измерения физиологических показателей летящей птицы, и др. Благодаря этой технике надежность и точность экспериментальных исследований в последнее время значительно повысились. Очень многое дает при изучении закономерностей полета птиц применение методов сравнительных исследований (разумеется, в том случае, когда внимание в равной степени обращено на морфологию, физиологию и экологию сравниваемых биологических объектов). В природе существует огромное многообразие типов полета птиц. Это многообразие определяется не только количеством видов птиц, но и тем, что каждый вид может использовать несколько типов полета. При сопоставлении птиц разных видов, различающихся теми или иными особенностями полета, выявляется взаимосвязь между изменением искомых параметров или конструктивных особенностей летательного аппарата. Конкретными примерами успешного применения упомянутого подхода могут служить выяснение значения аллометрии крыльев птиц и расшифровка механизма бессрывного обтекания, связанного с управлением пограничным слоем.

До реактивной авиации мы практически не управляли пограничным слоем воздуха, обтекавшим крылья. Ставили, правда, закрылки на аэродинамические гребни, чтобы воздушные потоки не перетекали по крылу. Но ведь у птиц нет никаких "аэродинамических гребней". Как они управляются без этих приспособлений? Ведь пограничный слой возникает и у птичьих крыльев.

Для объяснения этого появилась очень смелая и, можно даже сказать, дерзкая гипотеза: птицы обладают "чувством потока", активно управляют пограничным слоем. Они умеют направлять поток в любую нужную им сторону. Однако для того, чтобы гипотеза стала достоверной научной истиной, нужны веские, убедительные доказательства. Их поисками занялась Т. Л. Бородулина. Она обследовала и сравнила строение крыльев многих хороших и плохих летунов и установила следующее:

"Плавность обтекания птицы потоком воздуха при полете в большой степени зависит от микроструктуры перьев. У быстро и много летающих птиц лучи второго порядка (или бородочки) имеют широкую основную часть в виде тонкой пластинки, переходящую в длинную тонкую нить (пенулу). В месте перехода обычно бывает несколько шипообразных зубцов. Благодаря такому строению перьев происходит дробление воздушного потока по телу птицы на многочисленные мельчайшие потоки и бессрывное и плавное их стекание, что имеет существенное значение для уменьшения лобового сопротивления. Кроме того, пластинки основной части луча второго порядка расположены под положительным углом атаки к направлению полета и можно предположить, что это обеспечивает отсос части воздуха, препятствует отрыву ламинарного слоя и образованию турбулентных потоков.

Рельеф поверхности крыла — бороздчатый, что обеспечивает требуемое направление потоков воздуха, обтекающих крыло. На верхней стороне крыла у всех птиц бородки расположены более или менее веерообразно: они расходятся к заднему краю крыла, что увеличивает скорость прохождения потоков воздуха по крылу. На нижней же стороне бородки направлены иначе. У птиц с быстрым полетом (например, у уток) линии рельефа на нижней стороне крыла S-образно изогнуты и сходятся к основанию крыла. Это вызывает торможение потоков воздуха или их завихрение на нижней поверхности крыла. Вследствие различия скоростей прохождения воздушных потоков сверху и снизу крыла увеличивается подъемная сила последнего.

Предварительное продувание крыла с наклеенными шелковинками убедило нас в том, что на нижней поверхности крыла воздушные потоки отклоняются соответственно направлению бородок".

В настоящее время учеными изучено 14 различных характеристик живого крыла (влияние структуры перьев, уравновешивание крыла в движущемся потоке и др.). Дальнейший успех в разрешении множества вопросов, связанных с практическим осуществлением машущего полета, сейчас, очевидно, в значительной мере будет зависеть от того, насколько биологам, аэродинамикам, математикам, физикам и механикам удастся совместить результаты, добываемые при морфо-экологическом исследовании птиц, с современными теоретическими представлениями аэродинамики.

Однако уже сегодня ясно, что формула крыла орнитоптера не будет похожей на формулу крыла птицы. Иначе крыло махолета должно было бы иметь бороздки. По-видимому, кое-какие особенности будут отличать и другие элементы крыла. Некоторые ученые утверждают, что будущий птицелет "...будет тем полнее отвечать требованиям человеческой практики, чем меньше он будет представлять собою точную копию птицы...". Но не будем забегать слишком далеко вперед, строить прогнозы о том, что будет и чего не будет в махолете от летательного аппарата птицы. Сегодня, нам думается, важно другое: наметился путь, идя по которому ученые, несомненно, разгадают тайну полета птиц. И когда будет создана стройная физическая теория машущего полета, адекватная высокой сложности явления, инженеры, безусловно, построят махолеты — неприхотливые, экономичные, маневренные машины. Человек будет летать, как голубь или альбатрос, а может быть, и лучше.

Помимо изучения полета птиц у человека имеется еще один путь решения проблемы машущего полета.

Старинная восточная легенда рассказывает о мудреце, который сделал летательную машину с машущими крыльями, похожую на огромное насекомое. Когда мудрец узнал, что враги хотят похитить машину, он сжег ее. Так навеки была потеряна тайна конструкции механической стрекозы. Эта и многие другие легенды повествуют о том, что еще в далекой древности зародилась идея постройки летательного аппарата по принципу насекомого — энтомоптера[2]. Однако до последнего времени интересные особенности полета насекомых сравнительно мало привлекали внимание инженеров — конструкторов летательных аппаратов. Объяснить это можно лишь одним: полет насекомых — очень сложный процесс. Он таит в себе сотни загадок, ответ на которые еще не найден. Так, например, согласно чаконам современной аэродинамик майский жук летать не должен. Однако, ниспровергая всю нынешнюю теорию полета и сбивая с толку специалистов по аэродинамике, это насекомое все же летает. Для того чтобы летать, майский жук при среднем весе 0,9 г должен иметь коэффициент подъемной силы (относительная величина, пропорциональная подъемной силе) от 2 до 3, фактически же у этого насекомого коэффициент подъемной силы меньше 1!

Известно, что коэффициент подъемной силы наиболее совершенных крыльев, созданных самолетостроителями, колеблется от 1 до 1,5. Следовательно, крыло жука, хотя и кажется несовершенным, обеспечивает сравнительно большую подъемную силу. Этим обстоятельством заинтересовались ученые Нью-Йоркского университета. Для изучения полета майского жука они сконструировали в натуральную величину искусственное крыло (чтобы точно воспроизвести работу крыла, исследователи долго и внимательно анализировали кинопленку, на которой методом скоростной съемки был заснят полет жука). Экспериментальная установка позволяла измерять смещение крыла величиной 0,000025 см. Недавно руководитель проводимых исследований Леон Беннет заявил: "Если мы сумеем определить аэродинамику полета майского жука, мы или обнаружим какое-то несовершенство в современной теории полета насекомого, или откроем, что майский жук обладает каким-то неизвестным нам способом создания высокой подъемной силы".

Однако оставим в покое майского жука и обратимся к другим летающим насекомым, которых в природе насчитывается более 350 000 видов.

По-видимому, среди животных насекомые стали летать первыми. Во всяком случае, достоверно известно, что летающие насекомые появились на Земле более 300 миллионов лет назад. Далеко не все насекомые хорошо летают. Едва ли не большинство составляют посредственно и плохо летающие виды. Но есть множество форм, которые летают превосходно. Полет насекомых в основном определяется двумя факторами: характером мышц крыла и строением самого крыла. Так, у златоглазки — одного из немногих доживших до нашего времени представителей когда-то процветавшей группы сетчатокрылых — мускулатура передних и задних крыльев одинакова по мощности. Обе пары крыльев похожи по форме и величине. Летные возможности златоглазки практически ничтожны: судорожные взмахи крыльев позволяют ей достичь в лучшем случае скорости 60 см/сек. Такие же плохие летуны скорпионовы мухи и некоторые дневные бабочки, у которых передняя и задняя пары крыльев почти одинаковы или, во всяком случае, работают одинаково, да еще не синхронно, а "вразнобой". Исключение составляют лишь стрекозы; сохранив одинаково развитые пары крыльев, они тем не менее обладают превосходными летными качествами. Но у стрекоз совсем особое устройство крыловой мускулатуры — их "крыловый мотор" (крыловая скелетно-мышечная система) высоко специализирован. Главную роль в полете стрекоз играют мышцы прямого действия.

Кроме того, переднее крыло стрекозы далеко отодвинуто от заднего и они не соприкасаются друг с другом. У всех остальных современных видов насекомых в процессе эволюции одна пара крыльев усилилась за счет другой.

Здесь невольно сама собой напрашивается аналогия: подобно тому как творцы самолетов заменили старые, тихоходные "этажерки" — бипланы и трипланы — монопланами, природа помогла многим четырехкрылым насекомым усовершенствовать свой летательный аппарат, избавив или почти избавив его от лишней пары крыльев. У двукрылых — мух, слепней, комаров — задние крылья исчезли не бесследно, а превратились в жужжальца. Каждое жужжальце состоит из вздутого основания, тонкой ножки и вздутой головки и имеет вид булавы. Эти жалкие остатки задних крыльев не играют активной роли в полете, а лишь косвенно связаны с ним: они, говоря инженерным языком, выполняют функции стартера. Так как многие двукрылые взлетают на высоком ритме ударов крыльев, жужжальца способствуют "разгону" крыловых мышц. Постепенно ускоряя ритм своих движений, жужжальца вызывают соответствующие ритмические события в тех частях нервной системы насекомого, которые управляют крыловой мускулатурой. Когда достигается нужный ритм, включается собственно двигательный аппарат — "мотор крыла" сразу начинает работать полным ходом, что и требуется для взлета. У перепончатокрылых же переднее и заднее крылья сцеплены друг с другом, образуя механическое целое без всяких, однако, сращений. Переднее крыло пчелы, например, имеет на заднем краю складку — "карман". В него входят загнутые крючки переднего края заднего крыла, и последнее оказывается как бы на буксире у переднего и работает в унисон с ним (рис. 17, а). Почти так же устроен сцепочный механизм у тлей (рис. 17, 6, в, г), с той лишь разницей, что крючков здесь немного и они тесно сближены. Бабочки имеют иные сцепочные механизмы — толстые щетинки на нижней стороне заднего крыла входят в складку на переднем крыле. У многих высших форм этих приспособлений нет и крылья связываются посредством широкого наложения переднего на заднее. Но важен не способ соединения, а результат: у всех перепончатокрылых переднее и заднее крылья каждой стороны крепко скреплены и работают как одно целое. Таким образом, выражение "четырехкрылые" не следует понимать буквально. Морфологически четырехкрылое построение является функционально двукрылым.