Беседы о бионике — страница 33 из 107

Полтора века спустя решением так называемой "спалланцаниевой проблемы летучих мышей" занялись три американца — Г. Пирс, Д. Гриффин и Р. Га-ламбос. Экспериментируя с летучими мышами, они плотно закупоривали им воском рот или нос. И в том и в другом случае выпущенные в темноту комнаты летучие мыши совершенно теряли способность обнаруживать как большие, так и малые предметы, натыкались на стены и на любые другие препятствия, расставленные на пути их полета.

Теперь главный секрет ориентации летучих мышей можно считать раскрытым — они обладают поразительными по своему совершенству органами ультразвуковой локации! — заявили ученые. И действительно, точная электронная аппаратура позволила исследователям установить, что летучие мыши испускают неслышимые для человека ультразвуки и воспринимают их эхо, которое в полной темноте предупреждает о препятствиях или близкой добыче. С помощью ультразвуковых волн летучая мышь как бы ощупывает окружающее пространство. Своеобразный локатор помогает ей не только определять направление и расстояние до предметов, но и различать их между собой.

Изумительное мастерство в использовании ультразвуковых волн для получения сложных сведений об окружающем пространстве летучие мыши, разумеется, приобрели не сразу. Они обрели его в процессе длительной эволюции и прежде всего потому, что звук является удобным, если не единственным, способом ориентировки в тех условиях, в которых им приходится жить и перемещаться.

Каковы же конструкция и режим работы природного локатора летучей мыши?

Оказывается, ее гортань устроена наподобие обычного свистка. Через этот "свисток" мохнатый зверек выдыхает из легких воздух с такой силой, что наружу он вырывается, словно выброшенный взрывом. Вихрем проносясь через гортань, воздух рождает звук очень высокой частоты — от 50 до 100 кгц. Летучая мышь летает с открытой пастью, которая служит рупором для испускаемых ею ультразвуковых сигналов, а рупор, как известно, заставляет звуковое излучение распространяться преимущественно в одном направлении, в данном случае — в направлении полета.

Вполне естественно, что для целей локации летучие мыши используют ультразвук, а не низкочастотные колебания, воспринимаемые человеческим ухом. Дело здесь в том, что размеры предметов, которые еще удается обнаружить с помощью эхолокации, зависят от длины звуковой волны. От предмета, линейные размеры которого значительно больше длины волны, звук, собранный рупором в пучок, отражается примерно так же, как световой луч, падающий на зеркальную поверхность. В этом случае эхо, улавливаемое ушами летучей мыши, получается сильным: зверек хорошо "слышит" предмет.

Если размеры отражающего объекта равны или меньше длины волны, наблюдаются вторичные, дифрагированные волны, распространяющиеся во всех направлениях от малого объекта. Энергия отраженной таким образом волны, улавливаемая ушной раковиной летучей мыши, становится значительно меньше, и, следовательно, различить малый предмет оказывается гораздо сложнее.

Аналогичным условиям должен удовлетворять рупор для собирания излучения в узкий пучок: когда длина звуковой волны больше диаметра устья рупора, то звук фокусируется очень слабо или совсем не фокусируется. Локатор летучей мыши, работающий на частоте 100 кгц, излучает ультразвуковые волны длиной в 3,3 мм, которые ей очень легко сфокусировать открытой пастью. Эксперименты Д. Гриффина показывают, что чувствительность "приемника" локатора летучей мыши — ее ушей — настолько высока, что позволяет животному обнаруживать ячейки в металлической сетке из натянутых параллельно друг другу проволок диаметром 0,12 мм. Расстояние между проволоками в опытах составляло 30 см, т. е. немного превышало размах крыльев летучей мыши; тем не менее зверьки пролетали сквозь сетку, не задевая ее, до тех пор, пока диаметр проволок не становился меньше 0,12 мм.

В 1946 г. советский ученый Е. Я. Пумпер высказал очень интересное предположение, хорошо объяснявшее физиологическую природу эхолокации летучих мышей. По его гипотезе, летучая мышь издает каждый последующий ультразвуковой импульс сразу же после того, как воспринимает эхо предыдущего. Принятый после отражения сигнал является раздражителем, вызывающим посылку следующего зондирующего импульса. Таким образом, быстрые изменения обстановки, близость препятствия, необходимость схватить порхающую под носом бабочку вызывают быстрое нарастание частоты следования импульсов.

И действительно, в дальнейшем эксперименты показали, что летучая мышь перед стартом издает в секунду лишь 5 — 10 сигналов. В полете по прямой не слишком близко от непосредственно интересующих его объектов зверек учащает подачу ультразвуковых импульсов до 20 — 30 в секунду. Однако, как только он приближается к препятствию, число сигналов резко возрастает. В течение короткого времени во время охоты на ночных насекомых летучая мышь, настигая добычу, издает до 250 сигналов в секунду.

Интересно, что чувствительный "приемник" летучей мыши — ее уши — "выключается" на то время, в течение которого она "выдыхает" ультразвуковой импульс. При крике внутреннее ухо летучей мыши закрывается и вновь открывается, чтобы зафиксировать отраженный сигнал. Вероятно, чуткие уши животного могут повреждаться "ультразвуковым грохотом"[5], который производит его передатчик — гортань. Человек, знакомый с техникой радиолокации, обратит внимание на это обстоятельство — ведь закрывающееся среднее ухо представляет собой не что иное, как биологический эквивалент антенного переключателя. Это устройство отключает приемник радиолокатора на время излучения антенной мощного зондирующего импульса, который может мгновенно вывести приемник из строя. Природа, конструировавшая локатор летучей мыши, решила проблему защиты приемника просто и эффективно — ей не понадобились ни четвертьволновые линии, ни разрядники. Безопасность ушей гарантируется совершенством избранной ею механической конструкции: при максимальной частоте следования зондирующих импульсов, равной 250 гц, заслонка в ухе летучей мыши успевает открываться и закрываться 500 раз в секунду. При этом открывание заслонки должно длиться менее 1 мсек. Менее потому, что, как показали исследования, длительность самих импульсов при такой частоте их повторения составляет около 1 мсек.

Эта характеристика излучения — длительность импульсов — определяет точность эхолокации и, стало быть, способность летучей мыши ориентироваться в полете. Чем короче импульсы, тем шире возможности "мышиного локатора".

В самом деле, для того чтобы при помощи эха можно было определять расстояние до предмета, интервалы между импульсами должны превышать то время, в течение которого звук должен долететь до предмета и вернуться обратно. Если они оказываются короче этого времени, то обнаружение предмета становится весьма затруднительным. Вот пример. За 1 мсек (считая от начала импульса) звук успевает "пробежать" 33 см. Это значит, что уже через 1 мсек в приемник начнет поступать сигнал, отразившийся от предмета, который находится на расстоянии 16,5 см от пасти зверька. Если звуковая посылка длится более 1 мсек, то эхо от предметов, расположенных ближе 16 см, будет заглушаться основным, зондирующим импульсом; если же принять во внимание, что на время посылки импульса уши животного "выключаются", то станет ясно, что летучая мышь попросту не сможет "поймать" начало отраженного импульса. А ведь промежуток времени между началом посылки импульса и началом приема отраженного импульса позволяет достоверно определять расстояние до ближайшей "цели". Поэтому для успешного определения положения близких целей импульсы должны иметь минимально возможную длительность (1 мсек), а переключение локатора "на прием" должно осуществляться за время, меньшее длительности импульса (менее 1 мсек).

Таковы условия оптимальной работы и "тактико-технические данные" эхолокатора. Отсюда следует, что летучие мыши не могут определять положение насекомых или препятствий, которые находятся ближе 16 см, и, стало быть, должны или умереть голодной смертью, или разбиться в первом же полете. С ними действительно иногда происходят несчастные случаи, имеющие разные по степени тяжести последствия. Натуралисты знают, например, что если у входа в убежище нетопырей положить камень побольше, то они будут регулярно разбивать об него свои носы. Описаны также столкновения (со смертельными исходами) двух летучих мышей, занятых охотой. Эти наблюдения было трудно объяснить. Ведь всем известно, как летучие мыши охотятся за насекомыми. Гоняясь за своей ускользающей добычей, они маневрируют, проделывая мгновенные повороты и другие акробатические трюки, и в конце концов ловят на лету порхающих в неправильном полете мелких ночных бабочек, летающих жуков, поденок и комаров. Летучие мыши с исправными локаторами всегда сыты и доживают до глубокой старости. А несчастные случаи? Бывают. Но только тогда, когда локатор не работает. Недавно было установлено, что при приземлении летучие мыши почти не пользуются локатором, так как они уверены, что опускаются в нужное место. Потому они натыкаются при возвращении в гнездо на камень у входа, которого не было при их вылете. По той же причине происходят их столкновения в воздухе во время охоты: когда летучая мышь хватает свою жертву, она лишается возможности пользоваться локатором. Если пережевыванием заняты одновременно две летучие мыши, локаторы которых в это время не работают, а скорость полета составляет 4 м/сек, то вполне понятно, что возникает некоторая опасность столкновения.

Ну, а как обстоит дело с определением положения и преследованием целей, расстояние до которых не превышает 16 см? Ведь летучая мышь гонится за насекомым до тех пор, пока ей не удастся его поймать, причем от момента обнаружения и до момента "поражения цели" преследование имеет активный характер: в каждый момент времени летучая мышь знает, где находится жертва и в соответствии с этим изменяет направление своего полета. Значит, локатор летучей мыши оказывается эффективным вплоть до того момента, когда она настигает и хватает добычу.