Работа локатора летучей мыши в режиме обнаружения и сопровождения близких целей до сих пор не вполне ясна. Предполагают, что способность летучей мыши "видеть" то, что делается у нее под носом, связана с частотной модуляцией зондирующих импульсов ее локатора. Каждый импульс начинается с очень высокой частоты, а заканчивается на вдвое меньшей (падает на целую октаву). Нетопыри, например, начинают импульс с частоты около 100 кгц и заканчивают его на частоте 45 кгц. При длительности сигнала в 1 мсек изменение частоты оказывается очень быстрым. За этот короткий промежуток времени звук пробегает диапазон, вдвое превышающий область слышимых человеком частот.
Когда летучая мышь настигает добычу или приближается к препятствию, энергия испускаемых ею зондирующих сигналов уменьшается и при расстояниях, меньших 16 см, вероятно, становится безопасной для приемника. Если предположить, что после достижения безопасного уровня и вплоть до момента поимки добычи уши летучей мыши перестают "отключаться" на время работы передатчика, то становится понятной эффективность работы локатора на близких расстояниях. В самом деле, пусть частота испускаемого летучей мышью крика убывает пропорционально времени (от момента начала крика). Тогда, если за 1 мсек частота линейно падает от 100 до 45 кгц, то скорость ее убывания составляет 5 кгц/мсек. Отсюда следует, что, например, через 0,1 мсек после начала импульса его частота составляет уже не 100, а 94,5 кгц. К этому же времени приемник летучей мыши ловит отразившийся от цели импульс с начальной частотой 100 кгц. Таким образом, в этот момент на звуковой анализатор животного одновременно действует сильный сигнал с частотой 94,5 кгц (зондирующий импульс) и сравнительно слабый сигнал с частотой 100 кгц (импульс, отразившийся от цели). По-видимому, летучая мышь способна выделить из шума, создаваемого работающим передатчиком, слабый полезный сигнал с частотой 100 кгц; по задержке этого сигнала относительно начала зондирующего импульса и определяется расстояние до "цели". В данном случае при задержке 0,1 мсек цель, как легко сообразить, находится на расстоянии 1,6 см от уха животного. Этот локатор успешно справляется не только с помехами от собственного передатчика. Гоняясь за насекомыми, летучие мыши воспринимают более сложную "смесь" звуков, чем исходный сигнал и одиночное эхо от данного насекомого. В эту "смесь" входит эхо от всех объектов, расположенных на расстоянии в несколько метров: от поверхности земли, от стен пещеры, от каждого куста, ветки, листа, травинки. Многие объекты дают лишь слабое эхо, но ведь и эхо от насекомого тоже имеет малую интенсивность, и если летучая мышь его слышит, то она должна также воспринимать и все остальные эхо. Кроме того, как известно, летучие мыши почти никогда не охотятся в одиночку. Так, например, в Бракенской пещере, расположенной на юге США, обитает свыше 20 000 000 летучих мышей. Каждый вечер это огромное количество рукокрылых покидает свое убежище, чтобы снова вернуться в него утром. Во время охоты за ночными насекомыми у всех летучих мышей работают локаторы. При этом зверьки не сталкиваются и не мешают друг другу. Понятно, что в таких условиях задача выделения полезного сигнала из ералаша звуков оказывается чрезвычайно сложной. И тем не менее нетопырям она вполне по силам. При такой сложной ультразвуковой "какофонии" каждая особь безошибочно выделяет и принимает эхо посылаемого ею ультразвукового сигнала.
Способность ушей летучей мыши "отстраиваться" от сигналов, которые не представляют для нее интереса, — свойство величайшей ценности.
Хорошо известно, что выделение полезного сигнала на фоне естественных и искусственных помех — одна из старейших и важнейших проблем техники, с которой мы сталкиваемся в очень многих ее областях. Над решением этой задачи ученые и инженеры бьются с тех пор, как начало развиваться радиовещание. Были придуманы резонансные контуры с высокой добротностью, узкополосные усилители, схемы автоматической подстройки частоты и фазы, специальные виды модуляции, обеспечивающие защиту передаваемого сигнала от помех, и т. д. Но по мере усложнения задач радиосвязи проблема каждый раз встает с прежней остротой. Несколько лет назад американские ученые начали интересный эксперимент. Была сделана попытка установления односторонней связи с братьями по разуму, которые, как предполагалось, могут пытаться сделать это на частоте, излучаемой атомами ионизированного космического водорода. Сигналы, улавливаемые приемником совершенного радиотелескопа, подавались в электронную счетную машину на предмет обнаружения в них каких-либо закономерностей, признаков передаваемой информации. Если бы они существовали, машина должна была бы их обнаружить. Но эксперимент не был доведен до конца: произведенные с некоторым опозданием расчеты показали, что приемник просто не смог бы выделить радиосигналы других миров из радиошума, создаваемого космическим водородом.
Рис. 1. Определение летучей мышью расстояния до объекта (насекомого) (по П. Т. Асташенкову)
Приемник летучей мыши хорошо выделяет из шума звуковые, а не радиосигналы. Расстояния, на которых эффективно работает такой локатор, очень малы. Но быть может, неизвестный пока принцип, обеспечивающий высочайшую избирательность приемника нетопыря, удастся использовать в устройствах сверхдальней космической связи. И уж наверное он сможет оказаться полезным при конструировании защиты от помех во многих приемных устройствах. Во всяком случае, сейчас, когда в эфире работает столько станций, порой мешающих друг другу, отличные "мышиные" принципы отбора собственных сигналов привлекают самое пристальное внимание биоников, инженеров и физиков. Предполагают, что летучим мышам удается различать эхо от нескольких предметов по величине частотного сдвига, возникающего в результате сложения непрерывно изменяющейся частоты зондирующих импульсов и частоты эха (рис. 1). Сложение излучаемых импульсов, промодулированных по частоте, и отраженных сигналов дает сигналы разностной частоты Δf, которая пропорциональна расстоянию до объекта. Длительность сигналов разностной частоты также является функцией расстояния. Эта гипотеза никак не объясняет удивительную помехозащищенность локатора летучей мыши. А между тем известно, что ее приемник обнаруживает полезный сигнал даже в том случае, если помехи на 30 децибел (более чем в тридцать раз) превышают уровень сигнала!
Рис. 2. Тропическая летучая мышь-рыболов определяет местоположение рыбы под водой с помощью природной локационной системы
Поразительными по своему совершенству органами ультразвуковой эхолокации обладают, как установили ученые, тропические летучие мыши-рыболовы (рис. 2). Они летают у самой поверхности воды и, окуная в нее время от времени острые когти своих лапок, ухитряются ловить мелкую рыбешку. Ловя таким образом рыбу в темные ночи, эти зверьки издают ряд быстро повторяющихся сигналов, которые очень похожи на сигналы их насекомоядных родичей. Поскольку тело рыбы содержит больше 90% воды, оно почти не отражает подводные звуки, но наполненный воздухом плавательный пузырь представляет собой "непрозрачный" для звука экран. Ультразвук, пробив толщу воды, отражается от плавательного пузыря рыбешки, и его эхо возвращается к рыболову.
Может показаться, что рыбная ловля с помощью звуколокатора нисколько не сложнее или даже проще, чем охота на быстрых, беспорядочно летающих в воздухе насекомых. На самом деле это не так. Требования к локаторам у летучих мышей-рыболов и летучих мышей-охотниц несколько отличаются друг от друга. Известно, что при падении звука под прямым углом из воздуха на поверхность воды только 0,12% его энергии распространяется в воде в виде звуковых колебаний. Остальная энергия отражается от грайицы раздела сред. Такая же малая доля энергии звуковых волн, распространяющихся в воде, проходит из воды в воздух. Это значит, что от зондирующих импульсов летучей мыши после падения на поверхность воды из воздуха, распространения в воде, отражения от рыбы и возвращения к приемнику "рыболова" остается доля, равная (0,0012)2 = 1,44 · 10-6, т. е. эти импульсы ослабевают почти в миллион раз!
Кроме того, неизбежны и другие потери: лишь малая доля энергии звука отражается от тела рыбы, и очень незначительная ее часть после выхода из воды попадает в уши летучей мыши. Интересно отметить, что примерная оценка затухания звука при локации насекомого на расстоянии в 2 м показывает, что слуховой аппарат летучих мышей-охотниц способен воспринимать эхо столь же слабое, как и эхо при отражении от мелких рыбок, добываемых их собратьями-рыболовами.
Значит, летучая мышь судит об окружающей обстановке по отраженным сигналам своего локатора, которые иногда возвращаются к ней ослабленными во много миллионов раз. Интересно, что существует вид летучих мышей — подковоносы, — использующих для ориентировки именно этот признак отраженного сигнала (величину его ослабления), и по затуханию, а не по задержке отраженного импульса они определяют расстояния.
Таким образом, слуховой аппарат летучих мышей — это не просто анализатор, обладающий высокой чувствительностью. Органы их эхолокации настолько совершенны, что говорить просто о слухе здесь не приходится. Мы вправе говорить о качественном отличии слухового аппарата летучих мышей от соответствующих органов чувств других животных, об ультразвуковом "видении". Ведь органы звуколокации достигают наибольшего совершенства именно у тех рукокрылых, которые обладают очень плохим зрением, почти слепы, и поэтому у них совсем иное соотношение слуховых и зрительных центров. Так, например, летучую мышь не затрудняет полет в лабиринте из тонких проволочек, хотя при этом она должна иметь представление об их взаимном расположении. По существу, это и есть видение. Приспосабливая рукокрылых к ночному образу жизни, природа так "устроила" этих животных, что его раз услышать для них несравненно лучше, чем для нас, например, сто раз увидеть.
Благодаря выполненным за последнее время работам мы можем сегодня уже говорить языком цифр о ряде важнейших технических показателей локационного аппарата летучих мышей и сравнивать их с основными параметрами аналогичных систем, созданных человеком. Путем сопоставления мы можем также установить, в чем биологическая система превосходит технические, какова ее эффективность. Правда, здесь могут возникнуть серьезные возражения против осмысленности и правомерности подобного сравнения столь разнородных систем эхолокации, различающихся по мощности (на несколько порядков), по абсолютной дальности действия и т. п. Однако в общем-то звуко-локационный аппарат летучей мыши выполняет те же функции, что и обычные технические радиолокационные устройства, и поэтому в данном случае биологическую систему можно сравнивать с инженерной почти с тем же основанием, с каким обычно специалисты сравнивают между собой технические характеристики двух радиолокаторов. И в этом отноше