мешками, связанными с носовым каналом (рис. 4), и в виде звукового пучка направляют их на лоцируемый объект; дельфин может "ощупывать" пространство впереди себя через "линзу" и широким рассеянным пучком ультразвука и очень тонким.
Рис. 4. Ультразвуковая 'линза' и 'рефлектор' в голове дельфина (по В. Бельковичу и А. Яблокову)
И все же, хотя гипотеза звуковой линзы красиво и логично объясняла точность, прицельность и даже дальность эхолокации дельфинов, без экспериментальной проверки она практически оставалась бездоказательной. Правда, Эванс и Прескотт в подтверждение своей гипотезы провели один опыт. Они отрезали головы у двух дельфинов и через гортань и носовой канал пропускали 10 л воздуха под давлением в 1,5 атм. Полученный при этом звук был несколько сходен со звуком, который издают живые дельфины. Но измерения давления, создаваемого этими звуками на одинаковом расстоянии (38 см) от дыхала в разных секторах, не показали ярко выраженной направленности.
Рис. 5. Схема опыта с головой и черепом обычного дельфина (по Е. В. Романенко, А. Г. Томилину и Б. А. Артеменко). 1 — излучатель звука; 2 — приемник звука; 3 — голова дельфина, вращаемая вокруг вертикальной оси в горизонтальной плоскости
По-иному к выяснению роли головы дельфина в концентрировании звуковых колебаний подошли советские ученые Е. В. Романенко, А. Г. Томилин и Б. А. Артеменко. В своих экспериментах, поставленных в 1963 г. в небольшой бухте на Черном море, исследователи изучали концентрирование звука очищенным от тканей черепом и целой головой обыкновенного дельфина. Опыты велись в морской воде на глубине 1 м. "В обоих случаях, — пишет профессор А. Г. Томилин, — излучатель звука (шарик из титаната бария) помешали в область расположения воздушных мешков — к переносице головы или черепа дельфина. Излучатель подключали к звуковому генератору и получали колебания разной частоты. Колебания излучателя отражались от передней стенки черепа, проходили сквозь мягкие ткани и воду и воспринимались приемником, расположенным в 1,5 м от излучателя (рис. 5). Направленность звука исследовалась путем вращения черепа или головы дельфина около вертикальной оси в горизонтальной плоскости. Приемник четко показывал направленность звука, так как интенсивность принимаемых им звуков при вращении черепа изменялась. Испытания показали, как изменяется направленность звуков, формируемая черепом и целой головой дельфина, в зависимости от частоты излучаемых звуков. Оказалось, что с уменьшением частоты от 180 до 10 кгц направленность звуков, обусловливаемая вогнутой передней поверхностью мозговой части черепа и мягкими тканями головы, значительно уменьшалась, а звуковое поле расширялось (рис. 6).
Основную роль концентратора звуков выполняет череп, дополнительную — мягкие ткани головы. Таким образом, советские ученые доказали, что дельфины концентрируют и направляют свои акустические сигналы "ультразвуковым прожектором", роль которого выполняют череп и мягкие ткани головы. Чем выше частота импульсов, тем сильнее суживается звуковое поле посылаемого сигнала и тем выше точность локации. Именно в направленности сигналов таится секрет "ультразвукового разглядывания" дельфинами предметов на разных расстояниях" (курсив наш. — И, А.).
Рис. 6. Направленность, обусловленная костями черепа (сплошные линии) и всей головой (пунктирные линии) обычного дельфина (по Е. Б. Романенко, А. Г. Томилину и Б. А. Артеменко)
Ученые установили, что высота тона (частота) локатора дельфина, как и локатора летучей мыши, быстро меняется от начала каждого импульса к его концу. О преимуществах такой частотной модуляции мы уже говорили. В конце второй мировой войны инженеры эффективно использовали частотно-модулированные колебания для создания помехозащищенного ультразвукового гидролокатора — сонара. А спустя некоторое время, когда было начато подробное изучение дельфинов, оказалось, что сонар работает примерно так же, как локатор дельфина. Значит, инженеры открыли и сумели применить тот же принцип, который с незапамятных времен использует природа в своих живых ультразвуковых локаторах.
Принцип этот таков. Быстро меняющемуся тону передатчика соответствует и меняющаяся частота отраженного эха. Высота тона принимаемого сигнала отличается от тона звука, испускаемого в данный момент. Поэтому сонар не создает сам себе помех. Отраженный от цели импульс с характерным частотным спектром легко выделить из шума практически любой интенсивности. А это очень важно.
В начале войны почти все военные суда располагали устройствами для прослушивания подводных шумов; применяемые для этой цели гидрофоны и гидролокаторы представляли собой усовершенствованные варианты обычного эхолота. И те и другие исправно работали только тогда, когда корабль стоял на месте. При его движении в шуме воды, обтекавшей корпус, совершенно терялись сигналы эхолокаторов и становилось невозможным различить какие бы то ни было другие звуки (в том числе и шум винтов подкрадывающейся подводной лодки). Поэтому так губительны были атаки немецких "сумбарин", которые подходили вплотную к союзным конвоям без риска быть обнаруженными.
Теперь подводная лодка не сможет подойти к движущемуся судну незамеченной: на движущемся корабле сонар работает почти так же хорошо, как и на неподвижном. Кроме того, его сигналы, отраженные от предметов разной формы и размеров, несколько отличаются друг от друга, и поэтому опытный гидроакустик может опознать различные предметы, находящиеся в зоне действия локатора.
Сонары непрерывно совершенствуются, но пока по тактико-техническим данным им далеко до дельфиньих. Прежде всего гидролокационный аппарат дельфинов лучше защищен от помех, нежели современные сонары, спектр излучаемых им колебаний более широк, богаче модуляцией по интенсивности и частоте повторения. Так, например, в опытах Келлога в случаях ближней ориентации при решении задачи о местонахождении препятствия и пищи афалин пытались сбивать записанными ранее на пленку громкими сигналами, но животные без труда отличали свои истинные сигналы от этих искусственно воспроизводимых помех. Если наиболее совершенные локаторы, созданные инженерами, уверенно выделяют сигнал лишь при отношении сигнала к шуму, равном 2 или 3, то дельфиний звуколокатор, как показывают эксперименты, способен распознавать полезные сигналы, которые в десятки раз (!) слабее мешающего шума.
Не менее поразительна точность эхолокации дельфинов. Опытами установлено, что дельфины способны определять направление на цель при расстояниях в десятки метров с точностью не менее 30'. В экспериментах, проводившихся советскими учеными на Черном море, афалины безошибочно подплывали, например, к дробинке диаметром 4 мм, брошенной в море на расстоянии 20 — 30 м от животного, предварительно прощупав ее звуковым пучком. В опытах Норриса знакомая уже нам афалина Алиса с глазами, закрытыми резиновыми наглазниками, и плотно заткнутым носом вслепую определяла с большой точностью размеры шариков, которые бросал в воду экспериментатор. Сначала Норрис и его коллега Тернер научили Алису различать два стальных шара — маленький диаметром 3,75 см и большой диаметром 6,25 см. Если животное выбирало большой шар, то оно получало в награду рыбу. "Затем, — рассказывает Норрис, — мы закрыли глаза Алисе и постепенно увеличивали размер маленького шара. С закрытыми глазами, выбирая между шарами диаметром 5 и 6,25 см, Алиса не ошиблась ни разу на протяжении сотни опытов. Даже когда диаметры шаров составляли 5,62 и 6,25 см, она в большинстве случаев не ошибалась, хотя и были случайные ошибки. Эта разница в 0,6 см так мала, что вы с трудом можете ее обнаружить невооруженным глазом". Далее эксперименты показали, что, пользуясь своей сонарной системой, дельфин способен обнаружить металлическую проволоку диаметром 0,2 мм в 77% случаев.
Изучая работу локационного аппарата дельфина, ученые обнаружили еще одну очень важную его особенность: издаваемые животным ультразвуки, отражаясь от окружающих предметов, позволяют ему определять не только местоположение последних, но и их форму, природу, структуру. Так, например, в опытах Норриса с афалиной Алисой животное с плотно закрытыми глазами легко отличало при помощи своего сонара, издававшего скрипы, желатиновую капсулу, наполненную водой, от куска рыбы такой же величины. В экспериментах Келлога и его коллег подопытные дельфины Альберт и Бетти в кромешной тьме безошибочно отличали форель длиной 15 см от кефали длиной 30 см — форель им нравилась явно больше. В другом опыте крупной кефали дельфины предпочли вдвое меньшего пятнистого горбыля. Когда обеих рыб погружали в бассейн, афалины почти всегда устремлялись к горбылю: в первых 16 испытаниях Альберт ошибся только четыре раза, а в 140 последующих — ни одного раза! Когда горбыля подвешивали за стеклянным экраном (рыба была видна глазом, но недоступна для эхолокации), а кефаль — перед ним (она была доступна для ультразвукового распознавания), то дельфин никогда не пытался ловить горбыля и довольствовался кефалью. П. Т. Асташенков указывает, что дельфины могут обнаруживать стаю рыб и различать их породу на расстоянии 3 км!
Итак, все известные нам сегодня достоинства гидролокатора дельфинов убедительно говорят о том, что эта биологическая система является непревзойденным образцом для каждого инженера, занимающегося разработкой гидролокационной техники. Вместе с тем приходится признать, что принципы устройства и функционирования локатора у дельфина исследованы пока значительно хуже, чем у летучих мышей. Многое остается еще неясным и для биоников и для инженеров. Неизвестно, например, каким образом удается китообразным по отраженным звукам предельно точно различать величину и даже структуру предмета. Не ясно, применяют ли дельфины высокочастотные импульсы и "ультразвуковой прожектор" для дальнего эхолоцирования. Не выяснено также, на каком максимальном расстоянии еще достаточна точность их гидролокатора и какие частоты используются для дальней локации. Для ответа на все эти и множество других вопросов ученым придется поставить еще не одну серию опытов, произвести не одно исследование дельфиньего сонара.