Беседы о бионике — страница 90 из 107

ет функционировать в очень широких пределах освещенности. Фасеточный глаз реагирует не только на изменение интенсивности света, но и на изменение его спектрального состава, т. е. он может осуществлять цветовое зрение. Очень многие насекомые "видят" ультрафиолетовые лучи.

Рис. 7. Пчелиный 'фотометр' (стрелками показаны одиночные глаза на голове пчелы)


Человеческий глаз, как известно, воспринимает электромагнитные колебания в области от 0,4 до 0,8 мк, тогда как у многих насекомых нижняя граница этой области доходит до 0,3 мк. Пчелы, мухи и муравьи воспринимают ультрафиолетовое излучение. Правда, пчелы не "знают", что такое красный цвет. Алые цветы они выделяют среди прочих по другим признакам, например по интенсивности отраженных ультрафиолетовых лучей, так что алая роза или красный мак имеют для пчел "ультрафиолетовую" окраску.

Как ориентируются в своих длинных перелетах пчелы? Каким образом, пролетев очень большие расстояния, они находят дорогу к своему улью? Направление полета пчелы определяет все тот же фасеточный глаз.

У пчел и шмелей, кроме отчетливо видных фасеточных глаз, есть еще три малозаметных простых, одиночных, глаза (рис. 7). Назначение этих глаз до последнего времени объясняли по-разному: либо как вспомогательные органы для видения на расстоянии или фиксирования положения цели, либо как органы, определяющие интенсивность освещения. Недавно получены сведения, подтверждающие последнее предположение.

Опыты показали, что благодаря своим одиночным глазам — прекрасным фотометрам — пчелы различают степень освещенности (в пределах от 1,5 до 5 люксов), по которой они определяют время вылета утром за взятком и возвращения в улей вечером. Пчелы с заклеенными одиночными глазами вылетали позже и возвращались в улей раньше, чем контрольные. Если заклеивался только один одиночный глаз, то вылет и последнее возвращение в улей совершались при освещенности, вдвое большей, а в случае ослепления всех трех глаз — в 4,5 раза большей, чем в контрольном опыте. Выключение этих глаз не влияло на поведение пчел в течение дня. Интересно, что в нормальных условиях эти удивительные существа начинают свой последний вечерний путь в улей при освещенности, несколько превышающей ту, при которой они вылетали из него утром. Пчелы как бы учитывают продолжительность полета домой, чтобы прибыть к улью не позже того момента, после которого им станет трудно ориентироваться из-за недостаточной освещенности.

Одна из интереснейших возможностей зрительного аппарата насекомых — их способность видеть "быстрее", чем многие другие животные. Там, где человек видит какую-то промелькнувшую тень, та же пчела, например, отчетливо различает размеры и форму предмета. Временная разрешающая способность фасеточного глаза выше, чем у глаза человека.

Частота повторения вспышек, при которой они сливаются и создают у человека впечатление непрерывного света — 24 раз в секунду, — известна давно и используется в кино, телевидении, для измерений, основанных на стробоскопическом эффекте, и т. д. Насекомые же — мухи, пчелы, осы — не смогли бы смотреть ни кинофильмы, ни телевизионные передачи. При изучении их зрения оказалось, что частота повторения световых импульсов, при которой они сливаются в непрерывный свет, примерно равна 300, т. е. в 10 с лишним раз больше, чем у человека; поэтому насекомые видели бы на экране совершенно раздельные кадры, не сливающиеся в цельное изображение.

Рис. 8. Схема работы фасеточного глаза. В мозг насекомого поступает сигнал от изображения предмета, находящегося напротив ближайшего омматидия


Чем замечательно это свойство фасеточного глаза? Человек различает форму движущегося тела только в том случае, если изображение задерживается на сетчатке в течение 0,05 сек. Если время экспозиции меньше, то различить контуры отдельного изображения уже не удается, а одинаковые изображения сливаются в одно. У мухи же или у осы это время равно 0,01 сек. Измерение центрального угла омматидия мухи позволяет заключить следующее: если муха летит со скоростью 5 м/сек, то предмет диаметром 1,25 см, находящийся на расстоянии 1 м, будет восприниматься каждым омматидием в течение 0,01 сек, и, следовательно, будет виден очень отчетливо. Человек же увидел бы только промелькнувшую мимо тень. Для насекомого в единице времени больше мгновений! Процессы, кажущиеся человеку очень быстрыми, для насекомых идут гораздо медленнее, представляются расчлененными. С этим связана и чрезвычайно быстрая, непостижимая для человека скорость реакции насекомого.

Ничтожная инерционность зрительного восприятия насекомого в сочетании с одной особенностью фасеточного глаза представляет для бионики особый интерес. Дело в том, что в каждом омматидии, как отмечалось выше, возникает одно изображение предмета, находящегося в поле зрения, а значит, во всем фасеточном глазе — целая серия независимых друг от друга изображений. Однако, несмотря на это, мозг насекомого воспринимает лишь одно изображение — то, которое возникло в ближайшем к предмету омматидии. Изображения в остальных омматидиях блокируются (рис. 8). Любой перемещающийся предмет последовательно попадает в поле зрения различных омматидиев. Таким образом, животное оказывается в состоянии определить скоростьдвижения этого предмета.

Глаз мухи и послужил прототипом для прибора, способного измерять мгновенную скорость самолетов, попадающих в поле его зрения. На рис. 9 изображена упрощенная схема такого прибора, состоящего из двух омматидиев.

Рис. 9. Упрощенная электронная модель двух связанных омматидиев. а — задержка; б — суммирующий каскад; в — импульс с двойной амплитудой; г — два импульса с ординарной амплитудой


Когда самолет движется слева направо, возбуждается сначала первый омматидии. Импульс возбуждения поступает сразу на сумматоры первого (I) и второго (II) омматидиев. Но на сумматор II он попадает сразу, а на сумматор I — через линию задержки. Пока импульс находится в задерживающем устройстве I, самолет успевает переместиться в поле зрения омматидия II. Новый импульс возбуждения (теперь уже от второго омматидия) попадает в сумматор I сразу, а в сумматор II — через линию задержки. Когда второй импульс поступает в сумматор I, он складывается там с первым, который к этому времени прошел линию задержки. В результате сложения импульсов от первого омматидия идет один импульс с двойной амплитудой, от второго — два разных импульса с ординарной амплитудой, так как второй импульс поступает с линии задержки в сумматор II тогда, когда первый импульс уже прошел через него. Если бы самолет двигался в противоположную сторону, то сигнал с двойной амплитудой поступил бы с омматидия II, а два сигнала с ординарной амплитудой каждый — с омматидия I.

Счетно-решающее устройство, моделирующее мозг насекомого (на рисунке не показано), анализирует интервалы между сильными и слабыми сигналами, определяя скорость самолета.

Рис. 10. Линзы фотокамеры 'мушиный глаз'


Два года назад одна американская фирма создала фотокамеру "мушиный глаз" для репродукции особо точных микросхем электронных счетно-решающих машин. Свое название камера получила от объектива, похожего по своей структуре на ячеистую структуру фасеточного глаза мухи. Линза, вернее, 1329 линз, объединенных в один плоский диск (на рис. 10 — в правом нижнем углу), дают множество изображений, что обеспечивает разрешающую способность лучшую, чем 4000 линий на 1 см. Главное достоинство новой камеры "мушиный глаз" — большая скорость съемки, что позволяет получить за кратковременную экспозицию более 1300 изображений одного объекта.

Недавно ученые обнаружили, что глаза мечехвоста обладают уникальной способностью усиливать контраст между краем видимого объекта и фоном картины. Сигнал зрительного нерва, создаваемый относительно ярким светом, блокирует сигналы, порождаемые относительно слабым светом. В настоящее время ученые пытаются создать электронное устройство, которое могло бы имитировать механизм глаза мечехвоста. Они рассчитывают использовать это устройство в телевизионной установке, которая "просматривала" бы рентгеновские снимки, пленку, заснятую с воздуха, или, возможно, снимки Луны. Поскольку такое устройство должно усиливать контраст на краях объектов на снимках, телевизионное изображение будет легче изучать и анализировать.

Специалисты другой американской фирмы работают над следующей проблемой бионики. Они изучают "третий глаз" рака — некий светочувствительный орган, находящийся на хвосте животного; этот орган позволяет раку "видеть" то, что происходит позади него, и находить темные места для укрытия.

Природа чрезвычайно изобретательна. Настолько изобретательна, что "принцип действия" многих из созданных ею систем до сих пор не вполне ясен специалистам. Одна из проблем — зрение высших животных и, в частности, цветовое зрение.

Известен такой древний рассказ. Александр Македонский, хмурясь, рассматривал некую картину, на которой он был изображен верхом на своем знаменитом коне Буцефале. Свой портрет полководец весьма одобрял, но вот конь... Александр выразил свое неудовольствие художнику. Последний оскорбился и потребовал, чтобы к картине подвели коня. Историки утверждают, что, увидев свое изображение, Буцефал обрадовался и стал бить копытами, взволнованный своей импозантностью.

Достоверность этой истории весьма сомнительна. Однако здесь интересно другое: видят ли животные формы и краски так же (или почти так же), как люди?

Выяснением этого вопроса занялся немецкий зоолог Б. Гримек. И вот что оказалось. Кони принимают чучело лошади за живое существо, за своего сородича. Этот факт кажется совершенно непонятным, если учесть, что у лошадей высоко развито чувство обоняния.

Результат другого эксперимента еще более удивителен. Нарисовав на большом листе бумаги лошадь в натуральную величину, Гримек прибил эту картину к деревянному щиту и поставил его у стенки. Лошади реагировали на портрет своего сородича очень живо. Они толпились вокруг, старались коснуться мордой головы "лошади" — заводили знакомство. Казалось, их совсем не беспокоило, что от рисунка пахнет лишь бумагой и масляной краской. Эти опыты были проделаны в манеже. А на открытом пространстве лошади просто не замечали портретов.