Из анализа этих уравнений он смог сделать важный вывод: любое возмущение, названное им электромагнитной волной, обязанное существованию электрического и магнитного полей, должно распространяться в пространстве со скоростью 3∙108 м/с, т. е. со скоростью света.
Что это, случайное совпадение? Нет, Максвелл не верил в случайность. Он стремился в разных явлениях найти взаимную связь. И он сделал такой вывод: если электромагнитные волны движутся со скоростью света, значит свет— это тоже электромагнитная волна.
Примерно в 1885 г. Г. Герц (1857–1894) наряду с другими исследованиями попытался получить более точные теоретические обоснования уравнений Максвелла. Однако некоторые экспериментальные данные, полученные в то время, не могли быть объяснены. В частности, на протяжении XIX в. продолжались эксперименты по электролизу и предпринимались попытки построения теории для объяснения этих экспериментов. В 1881 г. немецкий ученый Гельмгольц писал: «Если мы примем гипотезу атомной структуры элементов, мы не можем не прийти к выводу о том, что электричество (как положительное, так и отрицательное) также разделяется на элементарные порции или атомы электричества».
Так существуют ли все же атомы электричества?
Изучая ионы различных веществ, ученые никогда не обнаруживали ионов с дробным элементарным зарядом.
Казалось бы, существует элементарный электрический заряд, который уже не делится на более мелкие части, или, другими словами, в природе действительно есть электрические атомы.
С помощью сконструированного прибора удалось доказать, что предполагаемый «электрический атом» несет в себе целое число элементарных зарядов, получивших название электронов. Однако природа электрона была все же не ясна.
В 1838 г. Фарадей, пропуская ток от электростатической машины через стеклянную трубку с воздухом при низком давлении, наблюдал фиолетовое свечение, исходящее из положительного электрода (анода). Это свечение распространялось почти до самого отрицательного электрода (катода) на другом конце трубки. Сам катод также светился, а между светящимся катодом и фиолетовым столбом имелось темное пространство.
НЕ ОТСЮДА ЛИ БЕРЕТ НАЧАЛО МНОГОЦВЕТЬЕ ВЕЧЕРНИХ УЛИЦ НАШИХ ГОРОДОВ?
Фиолетовый столб — это «дедушка» современных неоновых и флуоресцентных световых трубок. Окраска испускаемого такой трубкой света зависит от вида заполняющего ее газа. Неон при давлении приблизительно в одну сотую атмосферы испускает яркий оранжевый свет при пропускании через него тока, гелий — розовато-белый, пары ртути — зеленовато-голубой.
НАБЛЮДЕНИЕ ФАРАДЕЯ ПРИВЕЛО К СЕРЬЕЗНЫМ ТЕОРЕТИЧЕСКИМ ВЫВОДАМ.
Дальнейшие исследования показали, что между катодом и анодом распространяется излучение (названное катодным), представляющее собой поток электронов. Было установлено, что пробег катодного излучения в воздухе при нормальном давлении и нормальной температуре составляет примерно 1 см, и сделано смелое предположение: излучение состоит из частиц, являющихся компонентами атомов всех элементов.
Дж. Дж. Томсон писал: «Таким образом, катодные лучи представляют собой новое состояние вещества, существенно отличное от обычного газообразного состояния…; в этом новом состоянии материя представляет собой вещество, из которого построены все химические элементы».
Лоренц и Зееман предположили существование внутри атома маленьких заряженных частиц, вращающихся по орбитам внутри атома и способных испускать электромагнитные волны, к которым относится и свет.
На основании полученных уширенных спектральных линий удалось оценить значение отношения заряда к массе (е/m) предполагаемой составной частицы атома.
Было установлено, что действительная масса находящейся в атоме частицы составляет около 1∙10-8 массы атома. Примерно такая же масса получилась в расчетах Томсона для носителей электричества в катодных лучах.
1897 год, когда впервые была измерена масса электрона, принято считать датой открытия электрона.
ОТКРЫТИЕ ЭЛЕКТРОНА ПОМОГЛО ПОНЯТЬ СТРУКТУРУ АТОМА?
Начиная с 1897 г. стало ясно, что необходимо задуматься о структуре атома в целом, ибо открытие Зееманом частиц, обнаруженных в катодных лучах, еще не означало, что атом состоит только из таких частиц. Атом уже не мог больше рассматриваться как мельчайшая и самая фундаментальная частица.
Герц (1887) и Томсон (1897) экспериментально установили, что ультрафиолетовое излучение вызывает эмиссию отрицательно заряженных частиц из некоторых металлов (рис. 25).
Рис. 25.Принцип работы фотоэлемента
Измерения показали, что эти частицы по своим параметрам близки к частицам катодного излучения, т. е. в процессе эмиссии были обнаружены частицы, которые можно было отождествлять с катодным излучением. В те же годы Томсон определил массу отрицательно заряженных частиц, испускаемых нагретым до температуры плавления металлом, и значение отношения е/m обнаруженных частиц. Полученное отношение удовлетворительно согласуется со значением этого отношения для частиц катодных лучей.
Таким образом, изучение природы электрических явлений уже к 1890 г. дало возможность накопить много убедительных фактов, позволяющих утверждать, что электрон является составной частью атома. Теперь усилия физиков были направлены на изучение свойств электрона, ставились эксперименты и развивались теории, которые помогли бы осмыслить роль этой частицы в многочисленных химических и физических явлениях.
КАК ПОВЛИЯЛО ОТКРЫТИЕ ЭЛЕКТРОНА НА ДАЛЬНЕЙШЕЕ РАЗВИТИЕ НАУКИ?
Открытие электрона и логически связанные с ним открытия рентгеновского излучения и явления радиоактивности выявили новые возможности для экспериментальных исследований. Когда была усовершенствована техника эксперимента и увеличена точность наблюдений, стало ясно, что классические теории физики, например теория электромагнитных полей Максвелла, не способны объяснять поведение очень малых частиц. «Электрон так же неисчерпаем, как атом», — сказал В. И. Ленин в самом начале нашего века. И все дальнейшее развитие физики подтвердило мудрость ленинских слов. Но это стало возможным благодаря развитию современной теоретической физики.
В целом полученные теоретические и экспериментальные данные, достигнутые на основе квантовой механики, дали возможность ответить на следующие вопросы:
1) каким образом атомы поглощают или испускают излучение?
2) каковы свойства проводников, изоляторов и полупроводников?
3) какие существуют способы соединения различных атомов в молекулы? и т. д.
НУ, И КОНЕЧНО, НУЖНО ОБЯЗАТЕЛЬНО СКАЗАТЬ, ЧТО ДАЛО ОТКРЫТИЕ ЭЛЕКТРОНА ПРАКТИКЕ!
Следствием открытия волновой природы электронов стало изобретение Руденбергом в 1930 г. электронного микроскопа (рис. 26).
Рис. 26.Общий вид электронного микроскопа УЭМ-100
За годы, прошедшие со дня изобретения, электронный микроскоп стал незаменимым исследовательским прибором в медицине, в промышленности и в исследовательской работе.
Электрон используют в качестве «трудолюбивой рабочей лошади» в самых различных сферах. Построены различного рода установки, позволяющие ускорять электроны до энергии в несколько миллиардов электрон-вольт и с их помощью исследовать структуру вещества. Чтобы почувствовать масштаб этих цифр, достаточно вспомнить, что электроны в атомах, участвующие в процессах поглощения и испускания видимого света, а также в процессах химических взаимодействий между атомами, имеют энергии порядка нескольких электрон-вольт. В радиолампах электроны (рис. 27) достигают энергий нескольких сотен электрон-вольт.
Рис. 27. Трехэлектродная лампа (а) с нитью накала H, сеткой С, анодом А и изображения триода на радиосхемах (б)
В катодно-лучевых или телевизионных трубках (рис. 28) энергия электронов равна примерно десяти тысячам электрон-вольт, а в некоторых современных рентгеновских установках она доходит до миллиона электрон-вольт. Современные ускорители позволяют получить энергию в тысячи и десятки тысяч раз больше, чем миллионы электрон-вольт (рис. 29).
С помощью полученных на ускорителях сверхбыстрых электронов можно изучать структуру протонов, нейтронов и других частиц.
Рис. 28.Схематическое изображение электронно-лучевой трубки
Рис. 29.Линейный ускоритель ионов до энергии 10 МэВ (Харьков)
ЭЛЕКТРОННАЯ ЛАМПА — ТЕМА ОСОБОГО РАЗГОВОРА…
Электронные лампы, или радиолампы — одни из наиболее широко применяемых электронных приборов. Одна из самых простых ламп имеет три электрода: катод, испускающий электроны, анод, который их улавливает, и сетку, которая находится между катодом и анодом и управляет электронами (см. рис. 27).
Впервые трех-электродная лампа была предложена французским изобретателем Луи де Форестом в 1906 г. Электронно-вакуумные лампы — усилители и детекторы — обязательная часть всех радиостанций. В настоящее время электронно-вакуумные приборы переживают «вторую молодость». Они вновь занимают свое место в бытовых высококачественных усилителях для воспроизведения звукозаписи и в радиоприемниках, предназначенных для работы в комплекте с ними (тьюнер), вместо транзисторных устройств, имеющих принципиальные недостатки. Мощные ламповые генераторы используют на заводах для поверхностной закалки деталей, плавки металлов, сушки дерева и т. п.
Достигнув металла, электроны в нем резко тормозятся, и вся кинетическая энергия превращается в тепловую. При этом луч создает на глубине 0,001—0,1 мм энергию в сотни раз большую, чем любой источник теплоты.
Применение электронного луча преобразовало всю технологию сварки.
ЗДЕСЬ ЭЛЕКТРОННЫЙ ЛУЧ ВЫСТУПАЕТ В КАЧЕСТВЕ ИНСТРУМЕНТА…
Новые возможности открыла