Бесконечная сила. Как математический анализ раскрывает тайны вселенной — страница 14 из 64

Идеи Архимеда проявились, когда исследователи смоделировали гладкую двумерную поверхность черепа с помощью огромного количества треугольников. Мягкие ткани создавали собственные геометрические проблемы. В отличие от черепа, мягкие ткани полностью заполняют трехмерный объем. Они наполняют сложное пространство между кожей лица и черепом. Ученые представили эту ткань сотнями тысяч тетраэдров – трехмерных аналогов треугольников. На изображении внизу поверхность черепа аппроксимируют примерно 250 000 треугольников (они слишком малы, чтобы их разглядеть), а объем мягких тканей включает 650 000 тетраэдров.



Стефан Захов, институт Цузе в Берлине (ZIB)


Массив тетраэдров позволил исследователям предсказать, как поведут себя после операции мягкие ткани пациента. Грубо говоря, мягкие ткани – это упругий материал, немного похожий на резину или эластан. Если вы ущипнете себя за щеку, она изменит форму, а когда отпустите, вернется к естественному состоянию. Еще с 1800-х годов математики и инженеры использовали анализ, чтобы смоделировать, как различные материалы будут растягиваться, изгибаться или скручиваться, если их сжимать, растягивать или резать различными способами. Эта теория лучше всего развита в традиционных областях техники, где она используется для изучения напряжений и деформаций в мостах, зданиях, крыльях самолетов и многих других конструкциях из стали, бетона, алюминия и прочих жестких материалов. Немецкие исследователи адаптировали традиционный подход к мягким тканям и обнаружили, что он работает достаточно хорошо для того, чтобы быть полезным хирургам и пациентам.

Их основная идея заключалась в следующем. Представим мягкие ткани в виде сети тетраэдров, связанных между собой подобно бусинкам, соединенным эластичными нитями. Эти бусинки изображают небольшие кусочки ткани. Они соединены эластично, потому что в реальности атомы и молекулы в тканях соединены химическими связями. Эти связи сопротивляются растяжению и сжатию, что и обеспечивает упругость. Во время виртуальной операции хирург разрезает кости на виртуальном лице и передвигает некоторые их фрагменты. Когда кусок кости перемещается на новое место, он тянет за собой присоединенные ткани, а те, в свою очередь, тянут соседние ткани. В результате из-за этих сил сеть меняет конфигурацию. По мере движения участков ткани они меняют силы, оказываемые на соседей, поскольку связи между участками растягиваются или сжимаются. Затронутые соседи перенастраиваются сами и так далее. Отслеживание всех возникающих сил и смещений требует колоссальных вычислений, которые может выполнить только компьютер. Шаг за шагом алгоритм корректирует мириады сил и перемещений в крошечных тетраэдрах. В конечном счете все силы уравновешиваются и ткани приходят в новое состояние равновесия. Это и будет новой формой лица пациента, предсказанной моделью.

В 2006 году Дойфлхард, Вайзер и Захов проверили прогнозы своей модели для примерно тридцати клинических случаев и пришли к выводу, что она работает замечательно. В качестве одной из мер ее успешности было правильно предсказанное – с точностью до миллиметра – положение 70 % поверхности кожи на лице пациента. Только для 5–10 % поверхности отклонение от прогноза составляло более трех миллиметров. Другими словами, модели можно было доверять. И это, конечно, гораздо лучше, чем действовать наугад. Вот пример с одним пациентом до и после операции. На четырех иллюстрациях показан его профиль до операции (крайний рисунок слева), компьютерная модель лица в этот момент (второй рисунок слева), спрогнозированный результат операции (второй рисунок справа) и фактический результат (крайний рисунок справа).

Посмотрите на положение его челюсти до и после операции. Результаты говорят сами за себя.



Стефан Захов, институт Цузе в Берлине (ZIB)

К загадке движения

Я пишу эти строки на следующий день после метели. Вчера было 14 марта, День числа π[87], и у нас навалило тридцать сантиметров снега. Сегодня утром, четвертый раз расчищая подъездную дорожку, я с завистью наблюдал, как небольшой трактор с роторным снегометом легко прокладывал по улице путь. С помощью вращающегося винта он забирал снег, а потом выбрасывал его во двор моего соседа.

Подобное использование вращающегося винта для перемещения чего-либо также восходит к Архимеду, по крайней мере согласно традиции. В его честь мы называем такой механизм архимедов винт[88]. Говорят, что ученый придумал его во время поездки в Египет (хотя, возможно, ассирийцы использовали его намного раньше) для подъема воды в ирригационные каналы. Сегодня в механических устройствах для поддержания работы сердца применяют насосы, использующие архимедов винт: они поддерживают циркуляцию крови при повреждениях левого желудочка.

Однако очевидно, что Архимед не хотел, чтобы его помнили за винты, военные машины или любые другие практические изобретения: он не оставил нам о них никаких записей. Больше всего он гордился своими математическими открытиями, что также заставляет меня задуматься, о каком его наследии уместно поразмышлять в День числа π. За двадцать два столетия, прошедших с тех пор, как Архимед нашел границы числа π, новые приближения появлялись много раз, но при этом всегда использовались математические методы, введенные Архимедом: приближения многоугольниками или бесконечные ряды. В более широком смысле его наследие – первое принципиальное использование бесконечных процессов для определения количественных характеристик криволинейных форм. В этом ему не было равных ни тогда, ни сейчас.

Однако геометрия криволинейных форм имеет свои пределы. Нам нужно также знать, как в этом мире происходит движение – как смещаются ткани после операции, как кровь течет по артериям, как мяч летит по воздуху. Об этом Архимед промолчал[89]. Он дал нам знания по статике, о телах, уравновешенных на рычаге и устойчиво плавающих в воде. Он был мастером равновесия. Территория впереди таила в себе загадки движения.

Глава 3. Открытие законов движения

Когда Архимед умер, вместе с ним практически умерло и математическое изучение природы. Прошло полторы тысячи лет, прежде чем появился новый Архимед. В Италии эпохи Возрождения молодой ученый по имени Галилео Галилей начал с того места, на котором остановился великий грек. Он наблюдал, как двигаются предметы, когда летят по воздуху или падают на землю, и искал в их движении числовые закономерности. Он проводил тщательные эксперименты и анализировал их. Измерял время колебания маятников и спуска шариков по наклонным поверхностям и находил удивительные правила для обоих случаев. А тем временем молодой немецкий математик Иоганн Кеплер изучал движение планет. Оба ученых были очарованы обнаруженными в своих работах закономерностями и ощущали присутствие чего-то гораздо более глубокого. Они знали, что натолкнулись на нечто важное, но не могли понять его значения. Открытые ими законы движения были написаны на незнакомом языке, коим и было дифференциальное исчисление. Это были первые намеки на него, сделанные человечеству.

До работ Галилея и Кеплера природные явления редко воспринимались в математических терминах. Архимед открыл математические принципы равновесия и плавучести в своих законах рычага и гидростатического равновесия, однако их применение было ограничено статическими ситуациями, где не было движения. Галилей и Кеплер рискнули выйти за пределы статического мира Архимеда и исследовать, как движутся объекты. Их попытки разобраться в увиденном стимулировали появление нового вида математики, которая могла бы обращаться с движением, происходящим с переменной скоростью. Такая математика должна была описывать, например, изменение скорости шарика, катящегося по наклонной плоскости, или скорости планет, ускоряющихся по мере приближения к Солнцу и замедляющихся по мере удаления от него. В 1623 году Галилей описывал Вселенную как «величественную книгу… которая всегда открыта нашему взору»[90], но предупреждал, что «читать ее может лишь тот, кто сначала освоит язык и научится понимать знаки, которыми она начертана. Написана же она на языке математики, и знаки ее – треугольники, окружности и другие геометрические фигуры, без которых нельзя понять ни единого из стоящих в ней слов и остается лишь блуждать в темном лабиринте»[91]. Кеплер выражал еще большее преклонение перед геометрией. Он полагал, что она так же вечна, как божественный разум[92], и предоставила Богу закономерности[93] для сотворения мира. Задача Галилея, Кеплера и других близких им по духу математиков начала XVII века состояла в том, чтобы взять их любимую геометрию, так хорошо приспособленную для описания мира покоящегося, и распространить ее на мир меняющийся. Проблемы, с которыми они столкнулись, были больше чем математическими; им пришлось преодолевать философское, научное и богословское сопротивление.

Мир по Аристотелю

До XVII века движение и изменение были мало понятны. И не только потому, что их трудно изучать; они просто считались отвратительными. Платон учил[94], что цель геометрии – приобрести знание о том, что существует вечно, а не возникает на мгновение, а затем исчезает. Его философское презрение к преходящим вещам перешло в более крупных масштабах в космологию его самого выдающегося ученика – Аристотеля.

Согласно учению Аристотеля[95], которое доминировало в западной мысли почти два тысячелетия (и было принято католицизмом после того, как Фома Аквинский убрал из него языческие элементы), небеса вечны, неизменны и совершенны. Неподвижная Земля находится в центре божьего творения, а Солнце, Луна и плане