Падение, качение и закон нечетных чисел
Галилей первым стал практиковать научный метод. Вместо того чтобы цитировать авторитетов или философствовать, сидя в кресле, он изучал природу посредством тщательных наблюдений, остроумных экспериментов и изящных математических моделей. Такой подход позволил ему сделать многие замечательные открытия, среди которых было и такое: за тем, как падают предметы, скрываются нечетные числа 1, 3, 5, 7 и так далее.
До Галилея Аристотель предполагал, что тяжелые тела падают[111], потому что стремятся к своему естественному месту в центре космоса. Галилей считал, что это пустые слова. Вместо того чтобы размышлять, почему вещи упали, он хотел количественно определить характеристики того, как они падают. Для этого ему требовался способ измерять движение падающих тел и отслеживать, где они находятся, момент за моментом.
Это было непросто. Любой, кто сбрасывал камень с моста, знает, что камни падают быстро. Чтобы следить за камнем в каждый момент его падения, нужны очень точные часы, а таких во времена Галилея не было, да и несколько хороших видеокамер не помешали бы, но и они отсутствовали в начале 1600-х годов.
Галилей придумал блестящее решение: он замедлил движение. Вместо бросания камня с моста он пускал шар по наклонному скату. На языке физики он известен как наклонная плоскость, хотя во время первоначальных экспериментов Галилея это был длинный тонкий кусок дерева с прорезанным желобком для шара. Когда ученый уменьшал наклон почти до горизонтального, он мог замедлить движение шара до желаемой скорости, что позволяло ему измерять, где находится шар в каждый момент времени, обходясь инструментами, доступными в то время.
Чтобы определить время спуска шара, он использовал водяные часы. Они работали как секундомер: в начальный момент физик открывал вентиль и вода начинала с постоянной скоростью поступать по тонкой трубе в резервуар. В нужный момент он закрывал вентиль. Взвесив воду, накопившуюся в резервуаре за время спуска шара, Галилей мог количественно определить, сколько времени прошло, с точностью до «одной десятой удара пульса»[112],[113].
Он повторял эксперимент много раз, иногда меняя наклон ската, а иногда – расстояние, проходимое шаром. По его словам, он установил следующее: «Расстояния, пройденные за равные промежутки времени телом, падающим из состояния покоя, находятся между собой в таком же соотношении, как и нечетные числа, начинающиеся с единицы»[114].
Чтобы понятнее изложить этот закон больших чисел, предположим, что шар прокатится некоторое расстояние за первую единицу времени. Тогда за вторую единицу времени он прокатится втрое дальше, за третью – впятеро.. Это потрясающе! Нечетные числа 1, 3, 5 и так далее как-то связаны с тем, как предметы катятся вниз. И если падение – это предельный случай качения, когда наклон приближается к вертикали, то и для падения должно быть справедливо то же самое.
Мы можем только представить, как должен был обрадоваться Галилей, когда открыл это правило. Но обратите внимание, как он его сформулировал: словами, числами и соотношениями, а не буквами, формулами и уравнениями. Наша нынешняя манера использовать алгебру, а не разговорный язык, по тем временам казалась бы авангардным, новейшим, новомодным способом думать и говорить. Галилей так не думал и не выражался, да и читатели его бы не поняли.
Чтобы увидеть самые важные следствия из правила Галилея, давайте посмотрим, что произойдет при сложении последовательных нечетных чисел. За одну единицу времени шар прошел одну единицу расстояния. За следующую – еще три единицы расстояния, то есть в общей сложности 1 + 3 = 4 единицы с момента начала движения. После третьей единицы времени получаем 1 + 3 + 5 = 9 единиц расстояния. Обратите внимание на закономерность: числа 1, 4 и 9 – это квадраты последовательных целых чисел: 12 = 1, 22 = 4, 32 = 9. Таким образом, правило нечетных чисел Галилея, похоже, означает, что общее расстояние, пройденное падающим телом, пропорционально квадрату прошедшего времени.
Эту изящную связь между нечетными числами и квадратами можно доказать наглядно. Представьте нечетные числа как «уголки» из точек:
Теперь соедините их так, чтобы получился квадрат. Например, 1 + 3 + 5 + 7 = 16 = 4 × 4, поскольку мы можем сложить первые четыре уголка так, чтобы они образовали квадрат со стороной 4.
Наряду с законом о расстоянии, пройденном падающим телом, Галилей также открыл закон скорости. По его словам, скорость увеличивается пропорционально времени падения. Интересно здесь то, что ученый имел в виду мгновенную скорость, что кажется парадоксальным понятием. В книге «Две новые науки» он приложил немало усилий, чтобы объяснить, что при падении из состояния покоя тело не прыгает внезапно с нулевой скорости до какой-то более высокой, как полагали его современники. Наоборот, оно плавно проходит через все промежуточные скорости – бесконечное количество скоростей – за конечное время, начиная с нулевой и непрерывно увеличивая скорость при падении.
Итак, в этом законе падающих тел Галилей инстинктивно размышлял о мгновенной скорости – понятии дифференциального исчисления, с которым мы познакомимся в главе 6. В то время он не мог определить ее точно, но интуитивно понимал.
Искусство научного минимализма
Прежде чем мы оставим эксперимент Галилея с наклонной плоскостью, давайте обратим внимание на стоящее за ним мастерство. Ученый уговорил природу дать красивый ответ, задав красивый вопрос. Словно художник-экспрессионист, он выделял то, что его интересовало, отбрасывая остальное.
Например, описывая свой прибор, он говорит, что сделал желоб очень прямым, гладким и отполированным[115] и катил по нему твердый, гладкий и круглый бронзовый шар. Почему его так беспокоили гладкость, прямолинейность, твердость и округлость? Потому что ученый хотел, чтобы шар катился вниз в самых простых и идеальных условиях, какие он только мог представить. Он сделал все возможное, чтобы уменьшить потенциальные осложнения, возникающие из-за трения или столкновений шара с боковыми стенками желоба (что могло происходить, если канал не был прямым), из-за мягкости шара (что могло привести к потере энергии шаром из-за его деформации) и всего остального, что могло вызвать отклонения от идеального случая. Это был правильный эстетический выбор. Просто. Элегантно. И минимально.
Сравните это с Аристотелем, который ошибался с законами падения, потому что его сбивали с толку осложнения. Ученый считал, что тяжелые тела падают быстрее легких – со скоростью, пропорциональной их массе. Это верно для крошечных частиц, плавающих в очень густой вязкой среде, например патоке или меде, но неверно для пушечных ядер или мушкетных пуль, падающих сквозь воздух. Похоже, Аристотель был так озабочен силами сопротивления, создаваемыми воздухом (следует признать, что это важный эффект при падении перьев, листьев, снежинок и прочих легких предметов, у которых большая площадь поверхности, на которую воздействует воздух), что забыл проверить свою теорию на более типичных предметах вроде камней, кирпичей или обуви, то есть на компактных и тяжелых вещах. Другими словами, он слишком сильно сосредоточился на шуме (сопротивлении воздуха) и недостаточно на сигнале (инерция и сила тяжести)[116].
Галилей не позволил себе отвлекаться. Он знал, что сопротивление воздуха и трение в реальном мире неизбежны, а значит, и в его эксперименте тоже, но они несущественны. Предвидя критику, он признал, что дробинка падает не так быстро, как пушечное ядро, но отметил, что допущенная ошибка гораздо меньше, чем в теории Аристотеля. В книге «Две новые науки» персонаж, прототипом которого был Галилей, говорит простоватому собеседнику, стоящему на аристотелевских позициях[117]: «Я не хотел бы… чтобы вы поступали как многие другие, отклоняя беседу от главного вопроса, и придирались к выражению, в котором я допустил отклонение от действительности на один волосок, желая скрыть за этой небольшой погрешностью ошибку другого, грубую, как якорный канат»[118],[119].
В том-то и дело. В науке допустима погрешность в один волосок. А грубая, как якорный канат, – нет.
Галилей продолжил изучать движение брошенных тел, например полет мушкетной пули или пушечного ядра. По какой траектории они летят? Ученый полагал, что движение такого тела складывается из двух разных эффектов, которые следует рассматривать по отдельности: боковое движение, параллельное поверхности земли, в котором сила тяжести не играет роли, и вертикальное движение вверх или вниз, где действует сила тяжести и применим его закон падающих тел. Объединив оба вида движения, он обнаружил, что брошенные тела летят по параболическим траекториям. Вы наблюдаете их всякий раз, когда перебрасываетесь мячиком или пьете воду из питьевого фонтанчика.
Это была еще одна потрясающая связь между природой и математикой и еще одно свидетельство того, что книга природы написана на языке математики. Галилей был в восторге, обнаружив, что парабола, абстрактная кривая, которую изучал его кумир Архимед, существует в реальном мире. Природа использовала геометрию.
Но чтобы прийти к такому пониманию, Галилею нужно было знать, чем можно пренебречь. Как и прежде, приходилось игнорировать сопротивление воздуха – силу, замедлявшую движение летящего тела из-за трения. Для одних видов брошенных тел (камень) такое трение пренебрежимо мало по сравнению с гравитацией, тогда как для других (надувной мяч для пляжа или мяч для настольного тенниса) это не так. Все виды трения, включая сопротивление воздуха, трудны для изучения. По сей день оно остается загадкой и темой активных исследований.