Бесконечная сила. Как математический анализ раскрывает тайны вселенной — страница 18 из 64

Галилей умер, так и не успев сконструировать часы, которые можно было бы использовать для определения долготы. Христиан Гюйгенс представил свои маятниковые часы Лондонскому королевскому обществу в качестве решения проблемы, однако их конструкцию сочли неудовлетворительной, поскольку часы были слишком чувствительны к изменениям в окружающей среде. Позднее Гюйгенс изобрел морской хронометр, в котором колебания регулировались спиральной пружиной, а не маятником – новаторский проект, проложивший дорогу карманным и современным наручным часам. В итоге проблема долготы была решена в середине 1700-х Джоном Харрисоном, английским часовщиком-самоучкой. При испытаниях в море в 1760-х годах его хронометр H4 смог измерить долготу с точностью до 10 миль, чего оказалось достаточно для получения награды в 20 тысяч фунтов стерлингов от британского парламента (эквивалентно нескольким миллионам современных долларов)[131].

В нашу эпоху проблема навигации по-прежнему опирается на точное измерение времени. Рассмотрим систему глобального позиционирования[132]. Точно так же как механические часы были ключом к решению задачи определения долготы, атомные часы – это ключ к определению местоположения объектов на Земле с точностью до нескольких метров. Атомные часы – современная версия маятниковых часов Галилея. Они тоже следят за временем, отсчитывая колебания, только отслеживают не движения грузика, раскачивающегося вперед-назад, а подсчитывают колебания атомов при переходах между различными энергетическими состояниями, которых за одну секунду происходит 9 192 631 770. Хотя механизм и другой, принцип тот же. Повторяющиеся движения в противоположных направлениях можно использовать для определения времени.

В свою очередь, время может определить ваше местоположение. Когда вы используете GPS в своем телефоне или автомобиле, ваше устройство принимает беспроводные сигналы как минимум от четырех из двадцати четырех спутников системы глобального позиционирования, которые вращаются на орбите высотой около 20 тысяч километров. На каждом спутнике есть четверо атомных часов, синхронизированных между собой с точностью до миллиардной доли секунды. Различные спутники, которые видны вашему приемнику, направляют непрерывный поток сигналов, фиксируя время с точностью до наносекунды. Вот тут-то и нужны атомные часы. Их потрясающая временная точность преобразуется в не менее потрясающую пространственную точность, которую мы и привыкли ожидать от системы GPS.

Этот расчет опирается на триангуляцию – старый метод геопозиционирования, основанный на геометрии. В случае GPS он работает следующим образом: когда сигналы с четырех спутников поступают на приемник, ваше GPS-устройство сравнивает время их получения со временем их отправления и получает четыре разности, которые чуть-чуть отличаются, потому что спутники находятся от вас на разных расстояниях. Ваше устройство умножает эти разности на скорость света и получает расстояние до спутников. Поскольку положения спутников известны и точно контролируются, ваш GPS-приемник может провести триангуляцию и определить, в какой точке на поверхности он располагается. Он может также определить высоту над уровнем моря и скорость. По сути, GPS преобразует очень точные измерения времени в очень точные измерения расстояния и тем самым – в очень точные измерения местоположения и движения.

Система глобального позиционирования была разработана армией США во время холодной войны. Первоначальная цель состояла в отслеживании положения американских подводных лодок с ядерным оружием и обеспечении оценок их текущего положения, чтобы в случае необходимости нанесения ядерного удара они могли сверхточно нацеливать свои межконтинентальные баллистические ракеты. Мирные приложения GPS включают точные модели сельского хозяйства, слепую посадку самолетов в сильном тумане и системы службы 911, автоматически рассчитывающие оптимальные маршруты для автомобилей скорой помощи и пожарных.

Однако GPS – это больше чем система местоположения и направления. Она позволяет синхронизировать время с точностью до сотни наносекунд, а это важно для координации банковских переводов и иных финансовых транзакций. Она также поддерживает синхронизацию мобильных телефонов и в сетях передачи данных, что позволяет более эффективно делить частоты в электромагнитном спектре.

Я подробно рассказываю об этом потому, что GPS – яркий пример скрытой полезности анализа. Как это часто случается, анализ работает за кулисами повседневной жизни. В случае GPS почти все аспекты системы зависят от анализа. Подумайте о беспроводной связи между спутниками и приемниками; анализ предсказал электромагнитные волны, которые после упомянутой ранее работы Максвелла сделали возможной беспроводную связь. Без анализа не было бы ни ее, ни GPS. Аналогично атомные часы в спутниках системы GPS используют квантово-механические колебания атомов цезия; анализ лежит в основе уравнений квантовой механики и способов их решения. Без анализа не было бы атомных часов. Я мог бы продолжать: анализ лежит в основе математических методов расчета траекторий спутников и управления их движением, а также учета эйнштейновских релятивистских поправок при измерении времени, поскольку они двигаются с большой скоростью в сильном гравитационном поле, – но я надеюсь, что суть ясна. Анализ позволил создать многое из того, что привело к появлению глобальной системы позиционирования. Естественно, анализ не делал это в одиночку. Он был второстепенным, но в то же время очень важным игроком. Он входил в команду наряду с электротехникой, квантовой физикой, авиакосмической промышленностью и другими партнерами.

Давайте вернемся к молодому Галилею, сидящему в Пизанском соборе и размышляющему о колебаниях люстры. Теперь мы видим, что его мысли о маятниках и равном периоде колебаний оказали огромное влияние на ход развития цивилизации, причем не только в его, но и в нашу эпоху.

Кеплер и загадка движения планет

То, что Галилео Галилей делал для движения объектов на Земле, Иоганн Кеплер[133] делал для движения планет в небесах. Он разгадал старую задачу перемещения планет и исполнил мечту пифагорейцев, показав, что Солнечной системой управляет своеобразная небесная гармония. Подобно Пифагору с его струнами и Галилею с его маятниками и летающими телами, Кеплер открыл, что движение планет подчиняется математическим закономерностям. И, подобно Галилею, был очарован ими, хотя и огорчен, что не может их объяснить.

Как и Галилей, Кеплер родился в неблагополучной семье, но ситуация у него была значительно хуже: отец был наемным солдатом «с криминальными наклонностями»[134], как позднее вспоминал ученый, а мать (что вполне объяснимо) была «раздражительной»[135]. Вдобавок ко всему в детстве Кеплер заразился оспой и едва не умер, получив необратимые повреждения рук и зрения, из-за чего не мог бы во взрослом возрасте заниматься физическим трудом.

К счастью, он был умен. Будучи подростком, Иоганн изучал математику и коперниканскую астрономию в Тюбингене, где его признали обладателем «такого превосходного и величественного ума, что от него можно ожидать чего-то особенного»[136]. После получения степени магистра в 1591 году Кеплер изучал теологию в Тюбингене и планировал стать протестантским священником. Однако когда в протестантской школе в Граце умер преподаватель математики, церковные власти выбрали на это место Кеплера, хотя будущий ученый и неохотно отказался от духовной карьеры. Сегодня все, кто изучает физику и астрономию, знают о трех законах движения планет Кеплера. Однако часто упускается из виду история его мучительной, почти фанатичной борьбы за их открытие. Он десятилетиями кропотливо искал закономерности, движимый мистицизмом и верой, что в ночных положениях Меркурия, Венеры, Марса, Юпитера и Сатурна должен быть некий божественный порядок.

Через год после приезда в Грац Кеплер решил, что ему открылась тайна космоса. Во время урока к нему внезапно пришло видение, как должны располагаться планеты вокруг Солнца. Идея заключалась в том, что планеты переносятся небесными сферами, вложенными друг в друга подобно матрешкам, а расстояния между ними определяются пятью платоновыми телами: куб, тетраэдр, октаэдр, икосаэдр и додекаэдр. Платон знал, а Евклид доказал, что других правильных многогранников не существует. Кеплеру их уникальность и симметрия казались вполне пригодными для вечности.

Он лихорадочно производил расчеты. «День и ночь я был поглощен вычислениями, чтобы увидеть, согласуется ли эта идея с орбитами Коперника, или мою радость развеет ветер. За несколько дней все заработало, и я наблюдал, как одно тело за другим точно занимало свое место между планетами»[137].

Он описал октаэдр вокруг сферы Меркурия, а через его вершины провел сферу Венеры, вокруг которой затем описал икосаэдр, а через его вершины прошла сфера Земли, и так он поступил со всеми планетами, сцепляя сферы и платоновы тела подобно трехмерной головоломке. Он изобразил получившуюся систему в разрезе на рисунке в своей книге «Тайна мироздания», вышедшей в 1596 году.



Его прозрение многое объясняло. Поскольку было всего пять платоновых тел и только шесть планет (включая Землю), это означало пять промежутков между ними. Все имело смысл. Геометрия управляла космосом. Он хотел стать теологом и теперь мог с удовлетворением написать одному из наставников: «Смотрите, как Бог прославляется моими усилиями в астрономии»[138].

На самом деле эта теория не совсем соответствовала имеющимся фактам, особенно в отношении положения Меркурия и Юпитера. Это несоответствие означало, что что-то было не так, но что? Неверна теория, данные или и то и другое? Астроном подозревал, что неверными могут быть данные, но не настаивал на правильности своих теоретических построений (что было мудро, как мы теперь знаем, поскольку теория Кеплера не имела шансов на успех, ведь планет больше шести).