Бесконечная сила. Как математический анализ раскрывает тайны вселенной — страница 21 из 64

[148], занимаясь всем – от теологии и философии до астрономии и медицины. В своих работах по геометрии Ибн аль-Хайсам вычислял объемы тел, которые Архимед никогда не рассматривал. Но какими бы впечатляющими ни были эти достижения, они были редкими признаками жизни для геометрии, да и ушло на них двенадцать столетий.

В течение того же длительного периода в алгебре и арифметике наблюдался быстрый и существенный прогресс. Индийские математики изобрели понятие нуля и десятичную позиционную систему счисления. В Египте, Ираке, Персии и Китае появились алгебраические методы решения уравнений. Во многом это было обусловлено практическими задачами, связанными с законами о наследстве, налогообложением, торговлей, бухгалтерией, вычислением процентов и прочими вопросами, где требовались числа и уравнения. В те времена, когда алгебра использовала словесные формулировки, решения давались в виде рецептов, пошаговых путей к ответу, как это разъяснялось в знаменитой книге Мухаммада ибн Мусы аль-Хорезми (около 780–850), имя которого осталось в названии пошаговых процедур – алгоритмов. Со временем купцы и исследователи принесли эту вербальную форму алгебры и индо-арабские десятичные цифры в Европу, а арабские сочинения стали переводить на латынь.

В Европе изучение алгебры как самостоятельной символьной системы стало процветать в эпоху Возрождения и достигло пика примерно в 1500 году, когда она приняла современный вид – с буквами для обозначения цифр. Во Франции в 1591 году Франсуа Виет[149] обозначал неизвестные величины гласными буквами, например А и Е, а постоянные величины – согласными, такими как B и G. (Сегодняшние обозначения неизвестных x, y, z и постоянных a, b, c появились спустя полвека в работе Рене Декарта). Замена слов буквами и символами значительно упростила работу с уравнениями и поиск решений.

Не менее серьезный прогресс произошел в области арифметики, когда Симон Стевин в Голландии показал, как использовать десятичные дроби[150]. При этом он разрушил старое аристотелевское различие между числами (означавшими целое количество неделимых единиц) и величинами (непрерывными количествами, которые можно было делить до бесконечности). До Стевина индо-арабские цифры уже использовались для целых чисел, но числа меньше единицы выражались обыкновенными дробями[151]. В новом подходе Стевина даже единицу можно было разделить на части и записать с помощью десятичной записи, ставя цифры после десятичной запятой[152]. Сегодня нам это кажется само собой разумеющимся, но тогда это была революционная идея, которая способствовала появлению анализа. Как только единица перестала быть священной и неделимой, все величины – целые, дробные иррациональные – слились в единое семейство чисел на равных основаниях. В результате анализ получил бесконечно точные действительные числа, необходимые для описания пространства, времени, движения и изменений.

Незадолго до того как геометрия скооперировалась с алгеброй, прозвучало последнее «ура!» в честь геометрических методов старой школы Архимеда. В начале XVII века Кеплер нашел объем криволинейных тел (типа винных бочек и бубликов), мысленно представляя их разрезанными на бесконечно тонкие диски, в то время как Галилей и его ученики Эванджелиста Торричелли и Бонавентура Кавальери[153] аналогичным образом вычисляли площади, объемы и положения центра тяжести различных форм – представляя их состоящими из бесконечных множеств линий и поверхностей. И хотя подход этих людей к бесконечности и бесконечно малым величинам был небрежным, а их методы не отличались строгостью, тем не менее они были мощными и интуитивно понятными. Они приводили к ответам гораздо быстрее и проще, чем метод исчерпывания, так что это казалось захватывающим достижением (хотя теперь мы знаем, что Архимед их опередил; та же идея содержалась в его «Методе», который в то время еще томился незамеченным в молитвеннике в монастыре).

В любом случае, хотя прогресс новых последователей Архимеда в то время выглядел многообещающе, такому продолжению старого подхода не суждено было добиться успеха. Там, где было действие, появилась алгебра символов. А вместе с ней наконец были посеяны семена ее самых мощных ответвлений – аналитической геометрии и дифференциального исчисления.

Встреча алгебры с геометрией

Первый прорыв произошел примерно в 1630 году, когда два французских математика (вскоре ставшие соперниками) Пьер де Ферма и Рене Декарт независимо друг от друга связали алгебру и геометрию. Их работа привела к новой области математики – аналитической геометрии, действие в которой развивалось на координатной плоскости – арене, где уравнения оживали и принимали различные формы.

Сегодня мы используем координатную плоскость для построения графиков зависимости между переменными. Например, рассмотрим зависимость количества калорий от моих порой позорных привычек в еде. Иногда я позволяю себе пару кусочков хлеба с корицей и изюмом на завтрак. На упаковке написано, что каждый ломтик содержит колоссальные 200 калорий[154]. (Если бы я хотел есть более здоровую пищу, то мог бы довольствоваться зерновым хлебом, который покупает жена, в нем всего 130 калорий, но в нашем примере я предпочитаю хлеб с корицей и изюмом, потому что 200 – более удобное число с математической точки зрения, пусть и худшее в смысле калорийности, чем 130.)

Вот график числа калорий, которые я получаю вместе с одним, двумя или тремя ломтиками хлеба.



Поскольку в каждом кусочке 200 калорий, то в двух кусках их будет 400, а в трех – 600. Если нанести эти три точки на график, все они окажутся на прямой линии, то есть у нас получается линейная зависимость между числом съеденных кусков и количеством калорий. Если мы обозначим буквой x число кусков, а буквой y – число употребленных калорий, то линейную зависимость можно записать в виде y = 200x. Эту формулу можно использовать для любого количества хлеба. Например, полтора ломтика дадут 300 калорий, и соответствующая точка будет лежать на той же построенной прямой. Поэтому имеет смысл соединять все точки на таких графиках.

Я понимаю, что все это может показаться очевидным, но тем не менее хотел подчеркнуть, что в прошлом это было очевидно не всегда – ведь кто-то же должен был придумать изображать зависимость на такой абстрактной диаграмме. Это не всегда очевидно и сегодня, по крайней мере для детей при их первом знакомстве с подобными графиками.

Здесь есть определенный творческий подход. Прежде всего представление употребления пищи в виде картинки. Это требует гибкости ума. В калориях нет ничего графического. На графике нет реалистичного изображения изюминок и завитков корицы, вложенных в хлеб. Наш график – абстракция, но он дает возможность взаимодействовать различным областям математики: области чисел, таких как число калорий и ломтиков хлеба, области отношений вроде y = 200x и области форм, где есть две перпендикулярные оси, а точки лежат на прямой линии. Благодаря этому слиянию идей скромная диаграмма сочетает числа, зависимости и формы, позволяя объединять арифметику, алгебру и геометрию. Различные ветви математики столетиями работали по отдельности, а теперь слились воедино. (Вспомните, что древние греки ставили геометрию выше арифметики и алгебры и не позволяли им смешиваться, по крайней мере не часто.)

Еще одно слияние относится к горизонтальной и вертикальной осям. Их часто называют осью x и осью y – по переменным, которыми мы их обычно обозначаем. Эти оси – числовые прямые. Подумайте об этом термине: числовые прямые. Числа представлены в виде точек на какой-то прямой. Арифметика соединена с геометрией, причем еще до того, как мы наносим какие-то данные!

Древние греки просто бы истошно орали при таком нарушении протокола. Для них числа означали исключительно дискретные количества, например целые числа и дроби. Напротив, непрерывные количества, такие как длина какой-нибудь линии, считались величинами – принципиально другими сущностями, отличными от чисел. Таким образом, почти два тысячелетия от Архимеда до начала XVII века числа не рассматривались как эквивалент континуума точек на прямой. В этом смысле идея числовой прямой была радикальным нарушением. Сегодня мы даже не задумываемся об этом и ждем, что ученики начальной школы поймут, что числа могут быть наглядно представлены таким образом.

С точки зрения древних греков здесь имеется еще одно богохульство – график полностью пренебрегает сравнением подобного с подобным, скажем яблок с яблоками или калорий с калориями. Вместо этого он показывает ломтики хлеба на одной оси и калории на другой. Их нельзя сравнивать напрямую, и тем не менее мы, не моргнув глазом, делаем это с помощью графиков. Мы просто преобразуем калории и ломтики в числа, означающие действительные числа, бесконечные десятичные дроби, универсальную валюту современной математики. Греки проводили четкие различия между длинами, площадями и объемами, но для нас это просто действительные числа.

Уравнения как кривые

Безусловно, Ферма и Декарт никогда не использовали координатную плоскость для изучения таких осязаемых вещей, как хлеб с корицей и изюмом. Для них она была инструментом изучения чистой геометрии.

Работая независимо друг от друга, каждый из них заметил, что любое линейное уравнение (то есть уравнение, где переменные x и y появляются только в первой степени) дает прямую линию на координатной плоскости. Такая связь между линейными уравнениями и прямыми предпол