Бесконечная сила. Как математический анализ раскрывает тайны вселенной — страница 29 из 64

мультипликативные изменения частоты – как равные повышения в тоне, то есть равные аддитивные шаги. Поразительно! Наш мозг дурачит нас, заставляя считать, что 1 так же отстоит от 2, как 2 от 4, 4 от 8 и так далее. Каким-то образом мы ощущаем частоту (впрочем, как и громкость) логарифмически.


Натуральный логарифм и его показательная функция

Каким бы полезным ни было основание 10 в пору своего расцвета, в современном анализе оно редко используется, уступив место другому основанию, которое хоть и выглядит заумно, но оказывается куда более естественным, нежели 10. Оно называется числом e и примерно равно 2,718 (чуть позже я объясню, откуда оно берется), однако его численное значение неважно. Важно то, что показательная функция с этим основанием растет со скоростью, равной самой этой показательной функции.

Позвольте повторить это еще раз.

Скорость роста функции ex в точности равна ex.

Это чудесное свойство упрощает все вычисления с показательными функциями, если они выражены по основанию e. Ни одно другое основание не может похвалиться такой простотой. Работаем ли мы с производными, интегралами, дифференциальными уравнениями или другими инструментами анализа, показательные функции с основанием e всегда самые удобные, самые элегантные и самые красивые.

Помимо роли в упрощении анализа, основание e естественным образом возникает в сфере финансов и банковском деле. Следующий пример показывает, как оно появляется и как определяется.

Представьте, что вы положили в банк 100 долларов при немыслимой, но крайне соблазнительной ставке в 100 процентов годовых. Это означает, что через год ваши 100 долларов превратятся в 200. Теперь начнем сначала и рассмотрим еще более благоприятный сценарий. Допустим, вы убедили банк начислять проценты дважды в год, чтобы вы могли пользоваться процентами с процентов по мере роста вклада. Сколько вы заработаете в этом случае? Учитывая, что вы просите банк начислять проценты вдвое чаще, справедливо, чтобы процентная ставка за полгода составила половину, то есть 50 процентов. Тогда через 6 месяцев вы получите 100 × 1,5 = 150 долларов. А за следующие 6 месяцев, в конце года, сумма вырастет еще на 50 процентов и на вашем счету будет 150 × 1,50 = 225 долларов. Это больше, чем вы получали по первоначальной договоренности, поскольку теперь вам начисляют проценты на проценты.

Теперь ответим на вопрос, что произойдет, если вы сможете убедить банк начислять проценты еще чаще, пропорционально уменьшая процентную ставку для каждого периода начисления? Станете ли вы баснословно богаты? К сожалению, нет. Если начислять проценты раз в квартал (то есть четыре раза в год), то в конце года на счету будет 100 × 1,254 ≈ 244,14 доллара – не намного больше по сравнению с 225. Если начислять проценты каждый день, то есть 365 раз в год, то вы получите в конце года всего лишь



Эта формула означает, что каждый день ваш вклад увеличивается на 1/365 часть и это увеличение происходит 365 дней подряд.

Наконец, предположим, что начисление процентов происходит еще чаще. Пусть банк начисляет их раз в год, где n – очень большое число, но при этом ставка пропорционально уменьшается и при каждом начислении составляет 1 / n. Тогда аналогично случаю с 365 начислениями для итоговой суммы получаем формулу



Если устремить n к бесконечности, то итоговая величина вклада будет в 100 раз больше, чем предел величины при стремлении n к бесконечности. Этот предел и определяется как число e. Как его вычислить, вовсе не очевидно, но это предельное значение приблизительно равно 2,71828…

В банковском деле описанная финансовая конструкция называется непрерывным начислением процентов. Наши результаты показывают, что тут нет ничего чрезвычайного. В описанном примере через год ваш вклад составил бы 100 × e ≈ 271,83 доллара. Это самый лучший возможный результат, но такая сумма всего на 37 центов больше, чем результат начисления раз в день.

Мы перепрыгнули через множество препятствий, чтобы определить e. В итоге e оказалось хитрым пределом. В него встроена бесконечность точно так же, как и в число π для окружностей. Вспомните, что π включает вычисление периметра многоугольников, вписанных в окружность. Такие многоугольники приближаются к окружности по мере того, как количество их сторон n стремится к бесконечности, а длина каждой стороны стремится к нулю. Число e определяется во многом сходным образом, за исключением того, что появляется в другом контексте – при непрерывном начислении процентов.

Показательная функция с основанием e (ее часто называют экспонентой) обозначается ex, подобно тому как показательная функция с основанием 10 записывается как 10x. Поначалу это выглядит странно, но на структурном уровне никаких отличий от основания 10 нет. Все принципы и закономерности те же. Например, если мы хотим найти такое число x, чтобы ex равнялось определенному числу, например 90, мы можем снова использовать логарифмы, как и раньше, но теперь в игру вступает логарифм по основанию e, который называется натуральным логарифмом и обозначается lnx. Чтобы найти такое число x, чтобы ex = 90, включите инженерный калькулятор, введите 90, нажмите кнопку lnx и получите ответ:

ln90 ≈ 4,4498.

Для проверки держите это число на экране и нажмите кнопку ex. Должно получиться 90. Как и раньше, натуральный логарифм и экспонента отменяют действие друг друга, как степлер и антистеплер.

Как бы странно это ни звучало, натуральный логарифм крайне полезен на практике, хотя часто это и незаметно. Прежде всего он лежит в основе эмпирического правила, известного банкирам и инвесторам как «правило 72». Чтобы примерно оценить, через какое время удвоится ваш вклад при данной годовой ставке доходности, нужно разделить 72 на эту ставку. Например, при ставке 6 процентов годовых деньги удвоятся приблизительно через 72 / 6 = 12 лет. Это эмпирическое правило следует из свойств натурального логарифма и экспоненциального роста и хорошо работает при низких процентных ставках[186].

Кроме того, натуральные логарифмы стоят за радиоуглеродным датированием древних деревьев и костей, а также применяются для определения подлинности произведений искусства. В одном известном случае картины, которые приписывались Вермееру[187], оказались подделками, что было выявлено с помощью распадающихся изотопов свинца и радия в краске. Как показывают эти примеры, натуральный логарифм сейчас проникает во все области, где есть экспоненциальное увеличение или уменьшение[188].


Механизм экспоненциального изменения

Повторю самый важный момент, который выделяет e среди других оснований: скорость изменения функции ex – это ex. Следовательно, по мере подъема графика экспоненты ее наклон увеличивается в соответствии с текущей высотой. Чем выше поднимается график, тем круче становится. На языке анализа это утверждение звучит так: ex – это ее собственная производная. Ни одна другая функция не может этим похвастаться[189]. Это самая удачная из всех функций, по крайней мере, когда дело касается анализа.

Хотя основание e и уникально, остальные показательные функции подчиняются аналогичному принципу возрастания. Разница только в том, что у них рост не строго равен текущему значению функции, а пропорционален ему. Тем не менее этой пропорциональности достаточно, чтобы обеспечить ту взрывную мощь, которую мы связываем с экспоненциальным ростом.

Объяснение для такой пропорциональности должно быть интуитивно понятным. Например, в случае бактерий крупные популяции растут быстрее, потому что чем больше клеток, тем больше возможностей для деления и воспроизведения потомства. То же самое относится и к количеству денег на счете с постоянной ставкой годовых. Чем больше денег, тем больше начисляется процентов, а потому и сумма на счете растет быстрее.

Этот эффект также объясняет вой микрофона, когда он улавливает звук собственного динамика. Динамик содержит усилитель, который делает звук громче. Фактически он умножает уровень громкости на постоянный коэффициент. Если этот более громкий звук улавливается микрофоном, а затем снова отправляется к усилителю, то громкость звука будет многократно увеличиваться в цепи положительной обратной связи. Это вызывает экспоненциальный рост громкости, которая нарастает пропорционально текущему значению, что и приводит к ужасающему визгу.

По той же причине экспоненциальный рост имеет отношение к ядерным цепным реакциям. Когда ядро атома урана распадается, испускаются нейтроны, которые потенциально могут сталкиваться с ядрами других атомов и вызвать их расщепление. От этого появятся новые нейтроны и процесс пойдет далее. Если не остановить такое экспоненциальное увеличение количества нейтронов, оно может привести к ядерному взрыву.

Показательными функциями наряду с ростом можно описать и уменьшение. Оно происходит, когда величина уменьшается или потребляется со скоростью, пропорциональной ее текущему уровню. Например, половина атомов в отдельном куске урана распадается всегда за одно время – вне зависимости от того, сколько атомов в куске было изначально. Это время известно как период полураспада. Аналогичное понятие (например, период полувыведения) применимо и к другим областям. В главе 8 мы обсудим, что врачи узнали о СПИДе после того, как обнаружилось, что количество вирусных частиц в крови ВИЧ-инфицированных пациентов экспоненциально (с периодом полувыведения в двое суток) снизилось после ввода чудесного препарата под названием ингибитор протеазы.