y около 8 (назовем его dy), которое в 12 раз больше (dy = 12dx).
Между прочим, аналогичные рассуждения показывают, что для любого положительного n производная y = xn равна dy / dx = Δxn-1; этот результат мы уже упоминали ранее. При небольших дополнительных усилиях мы могли бы распространить его на отрицательные, дробные и иррациональные n.
Большое преимущество бесконечно малых в целом и дифференциалов в частности состоит в том, что они облегчают вычисления. Они срезают путь. Освобождают разум для более творческого мышления, так же как алгебра делала это для геометрии в давние годы. Вот за это Лейбниц и обожал дифференциалы. Он писал своему наставнику Гюйгенсу: «Мой анализ обеспечил мне практически без размышлений огромную часть открытий, которые относятся к этой теме. Что мне больше всего нравится в моем анализе, так это то, что он предоставляет те же преимущества перед древними в геометрии Архимеда, которые Виет и Декарт дали нам в геометрии Евклида или Аполлония, освобождая нас от необходимости работать с воображением»[241].
Единственное, что нехорошо с бесконечно малыми величинами, – это то, что они не существуют, по крайней мере в системе действительных чисел. Да, и еще одно – они парадоксальны. Они не казались бы осмысленными, даже если бы существовали. Один из последователей Лейбница, Иоганн Бернулли, понял, что они обязаны удовлетворять бессмысленным уравнениям вроде x + dx = x, хотя dx – это не ноль. Хм. Ну нельзя же получить все сразу! Бесконечно малые величины действительно дают правильные ответы, как только мы научимся с ними работать, а предоставляемые ими выгоды с лихвой компенсируют все психические расстройства, которые они могут вызывать. Они подобны лжи Пикассо, которая помогает нам осознать истину.
В качестве еще одной демонстрации мощи бесконечно малых величин Лейбниц использовал их для вывода закона синусов для преломления света, предложенного Снеллом. Вспомните главу 4: когда свет переходит из одной среды в другую (скажем, из воздуха в воду), он изгибается в соответствии с математическим законом, который не раз был установлен в течение столетий. Ферма объяснил его своим принципом наименьшего времени, но изо всех сил пытался решить задачу оптимизации, которую подразумевал его принцип. С помощью своих дифференциалов Лейбниц с легкостью вывел закон синусов[242] и с явной гордостью отметил, что «другие весьма ученые мужи искали многими хитроумными способами то, что человек, сведущий в этом анализе, может достичь в этих строках, как по волшебству»[243].
Основная теорема анализа через дифференциалы
Еще одним триумфом дифференциалов Лейбница стало то, что они сделали основную теорему прозрачной. Вспомним, что она относится к функции накопления площади A(x), которая определяет площадь под кривой y = f(x) в интервале от 0 до x. Теорема гласит, что при сдвиге x вправо площадь под кривой накапливается со скоростью самой f(x). Таким образом, f(x) является производной A(x).
Чтобы понять, откуда берется этот результат, предположим, что мы увеличиваем x на бесконечно малую величину dx. Как изменится площадь A(x)? По определению, она изменится на величину dA, то есть новая площадь равна старой плюс ее приращение, A + dA.
Основная теорема получается сразу же, как только мы наглядно представим, чему должно равняться dA. Как видно из рисунка ниже, площадь изменяется на бесконечно малую величину dA, которая представляет собой узкую вертикальную полоску между x и x + dx.
Эта полоска – прямоугольник с высотой y и основанием dx. Поэтому его площадь равна произведению этих величин, то есть y dx или, если угодно, f(x)dx.
В действительности такая полоска будет прямоугольником только при бесконечно малом приращении. В реальности для полоски конечной ширины Δx изменение площади ΔA будет состоять из двух частей. Основной вклад внесет прямоугольник площади yΔx. Намного меньше по площади маленький, криволинейный сверху, похожий на треугольник кусочек, располагающийся над этим прямоугольником.
Вот еще один случай, когда мир бесконечно малых величин приятнее реального. В реальном мире нам пришлось бы учитывать площадь этой крышечки, а это сделать непросто, поскольку она зависит от формы кривой. Но когда ширина прямоугольника стремится к нулю и «становится» dx, площадь крышечки оказывается пренебрежимо малой по сравнению с площадью прямоугольника. Это сверхмалая величина по сравнению с малой величиной.
В результате получается, что dA = y dx = f(x)dx. Бум! И вот вам основная теорема анализа. Или, как это более вежливо переформулируют в нынешние дни (в наше заблудшее время, когда дифференциалы отвергнуты ради производных),
Это в точности то, что мы установили в главе 7 с помощью примера с малярным валиком.
И последнее: когда мы рассматриваем площадь под кривой как сумму бесконечного числа бесконечно узких прямоугольных полосок, то записываем это как[244]
Этот символ с длинной шеей, похожий на лебедя – фактически растянутая буква S, которая напоминает нам, что здесь происходит суммирование[245]. Это суммирование определенного рода, характерное для интегрального исчисления, подразумевающее сумму бесконечного количества бесконечно узких полосок, объединенных в единую связную область. Символ называется знаком интеграла. Лейбниц ввел его в рукописи 1677 года и опубликовал в 1686-м. Это самый узнаваемый символ математического анализа. Число 0 под этим знаком и величина x над ним указывают на конечные точки интервала на оси x, над которым выстроены прямоугольники. Эти точки называются пределами интегрирования.
Как Лейбниц пришел к дифференциалам и основной теореме?
Ньютон и Лейбниц пришли к основной теореме анализа разными путями. Ньютон – размышляя о движении, постоянном спутнике математики. Лейбниц же зашел с другой стороны. Хотя у него не было математического образования, ранее он какое-то время занимался целыми числами, сочетаниями и перестановками, а также дробями и суммами определенного рода.
Более глубоко погружаться в эту науку он начал после встречи с Христианом Гюйгенсом. В то время Лейбниц находился с дипломатической миссией в Париже и был очарован рассказами Гюйгенса о последних достижениях в математике, поэтому захотел узнать больше. С чудесной педагогической прозорливостью (или это была удача?) Гюйгенс поставил перед учеником задачу, которая и привела немецкого математика к основной теореме[246].
Гюйгенс предложил Лейбницу вычислить бесконечную сумму:
(Точки в знаменателе означают умножение.) Чтобы понять задачу, начнем для разминки с простого варианта. Предположим, что сумма не бесконечна, а содержит, скажем, только 99 слагаемых. Иными словами, нам нужно вычислить
Если вы не найдете какого-то хитроумного трюка, то расчеты будут утомительными, хотя и несложными. При достаточном терпении (или при наличии компьютера) и упорстве можно сложить все 99 дробей. Однако пропала бы суть, а она тут в том, чтобы найти элегантное решение. Элегантные решения ценятся в математике не только потому, что красивы, но и потому, что сильны. Проливаемый ими свет часто можно использовать для решения других задач. В нашем случае элегантный свет, быстро обнаруженный Лейбницем, позволил ему открыть основную теорему анализа.
Он решил задачу Гюйгенса с помощью блестящего трюка. Когда я увидел его впервые, у меня было ощущение, что я наблюдаю за фокусником, извлекающим кролика из шляпы. Если вы хотите испытать схожие эмоции, пропустите аналогию, которую я сейчас проведу. Но если предпочитаете понимать то, что кроется за этим волшебством, смотрите на то, что за ним стоит.
Представьте человека, который поднимается по очень длинной лестнице с разной высотой ступенек.
Предположим, что наш герой решил измерить общую высоту подъема – от нижней ступени до верхней. Как ему это сделать? Ну, он всегда может сложить высоту всех отдельных ступенек. Такая мало вдохновляющая стратегия походила бы на сложение 99 дробей в вышеописанной сумме S. Так можно сделать, но эта работа не из приятных, потому что лестница у нас неправильная. А если в ней миллионы ступенек, то складывать их высоту – напрасный труд. Должен существовать способ получше.
И он есть – использовать альтиметр (высотомер). Это устройство, которое измеряет высоту над уровнем моря или земли. Если бы у Зенона на рисунке был высотомер, он бы решил задачу, просто определив высоту верхней точки, высоту нижней точки, а затем вычел бы одно из другого. Вот и все: общий подъем по вертикали равен разности этих двух величин. Такая разность равна сумме высот всех ступенек. Какой бы неправильной ни была лестница, это правило верно всегда. Его успех опирается на тот факт, что данные высотомера тесно связаны с величиной ступенек: для каждой ступеньки ее высота равна разности между последовательными показаниями высотомера. Иными словами, высота ступеньки – это разность высот ее вершины и ее основания.
Сейчас вы, вероятно, думаете: какое отношение имеет альтиметр к исходной задаче сложения большого числа сложных дробей?